• Title/Summary/Keyword: non-composite

Search Result 1,594, Processing Time 0.026 seconds

The Structural Characteristics of Non-slip Device in Connecting Method Between Steel Pipe Pile and Footing (미끌림 방지턱을 이용한 강관말뚝 머리 결합부의 구조특성에 관한 실험적 연구)

  • 박영호;김낙영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.227-243
    • /
    • 2003
  • To find the structural characteristics of non-slip device in connecting method B between steel pipe pile and concrete footing, compression and uplift test was performed for full sized specimens not having non-slip device, those having non-slip device with two curved steel plate bars welded inside the steel pipe pile(standard method), and those having non-slip device with serveral curved steel plate bars bolted inside the steel pipe pile(new method). As a result, specimens not having non-slip device had chemical debonding failure at 15.6tonf of peak uplift load and 27.57tonf of peak compression load. And the standard method and the new method showed about 8.9 times of peak uplift load and 6.2 times of peak compression load higher than specimens not having non-slip device. The load transfers of lower non-slip devices of the standard method and the new method were similar in behavior, while the higher non-slip device of the new method showed higher ratio of load transfer than that of the standard method. And these two methods had nearly the same composite action and structural capacity caused by non-slip devices.

The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements (ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kang, Dae-Hyun;Ok, Il-Seok;Yun, Hyun-Do;Kim, Jae-Hwan;Yang, Il-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.541-549
    • /
    • 2015
  • This study was conducted to experimentally investigate the seismic retrofitting performance of non-ductile reinforced concrete (RC) frames by introducing engineered cementitious composite (ECC) wing panel elements. Non-ductile RC frame tested in this study were designed and detailed for gravity loads with insufficient or no consideration to lateral loads. Therefore, Non-ductile RC frame were not satisfied on present seismic code requirements. The precast ECC wing panels were used to improve the seismic structural performance of existing non-ductile RC frame. A series of experiments were carried out to evaluate the structural performance of ECC wing panel elements alone a non-ductile RC frame strengthened by adding ECC panel elements. Failure pattern, strength, stiffness and energy dissipation characteristics of specimens were evaluated based on the test results. The test results show that both lateral strength and stiffness were significantly improved in specimen strengthened than non-ductile RC frame. It is noted that ECC wing wall elements application on non-ductile RC frame can be effective alternative on seismic retrofit of non-ductile building.

Permeation Properties of Composite Thin Film for Organic Based Electronic Devices

  • Kim, Kwang-Ho;Kim, Hoon;Lee, Joo-Won;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Jang, Jin;Oh, Myung-Hwan;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.920-923
    • /
    • 2003
  • We fabricated composite materials as a pellet structure with the various kinds of inorganic material powder. The composite materials were deposited onto the plastic film by the electron beam evaporation and water vapor transmission rates (WVTRs) were measured by the MOCON facility. As a result of WVTRs, the composite materials had lower WVTR value than any other inorganic materials. So, these films were proposed to protect the organic light emitting device (OLED) from moisture and oxygen. We can consider that the composite thin-film is one of the more suitable candidates for the thin-film passivation layer in the OLED. And, we are processing the XRD, XPS and EPMA to analyze the property of the composite material. We will also analyze properties of the current-voltage and luminescence for lifetime both the composite thin-film passivated OLED and non-passivated OLED.

  • PDF

The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite ($Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향)

  • 이수영;임경호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm

  • Kim, Sun-Hwa;Eun, Jeong;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.259-276
    • /
    • 2011
  • Short-term land cover changes, such as forest fire scar and crop harvesting, can be detected by high temporal resolution satellite imagery like MODIS and AVHRR. Because these optical satellite images are often obscured by clouds, the static cloud-free composite methods (maximum NDVI, minblue, minVZA, etc.) has been used based on non-overlapping composite period (8-day, 16-day, or a month). Due to relatively long time lag between successive images, these methods are not suitable for observing short-term land cover changes in near-real time. In this study, we suggested a new dynamic cloud-free composite algorithm that uses cut-and-patch method of cloud-masked daily MODIS data using MOD35 products. Because this dynamic composite algorithm generates daily cloud-free MODIS images with the most recent information, it can be used to monitor short-term land cover changes in near-real time. The dynamic composite algorithm also provides information on the date of each pixel used in compositing, thereby makes accurately identify the date of short-term event.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.

Experimental investigation of local stress distribution along the cross-section of composite steel beams near joints

  • Sangwook Park;Patricia Clayton;Todd A. Helwig;Michael D. Engelhardt;Eric B. Williamson
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.563-573
    • /
    • 2024
  • This research experimentally evaluated the local stress distribution along the cross-section of composite beams under both positive and negative moments. The experiment utilized a large-scale, two-story, two-by-three bay steel gravity frame with a concrete on metal deck floor system. The composite shear connections, which are nominally assumed to be pinned under gravity loading, can develop non-negligible moment-resisting capacity when subjected to lateral loads. This paper discusses the local stress distribution, orshear lag effects, observed near the beam-to-column connections when subjected to combined gravity and lateral loading. Strain gauges were used for measurements along the beam depth at varying distances from the connection. The experimental data showed amplified shear lag effects near the unconnected region of the beam web and bottom flange under the applied loading conditions. These results indicate that strain does not vary linearly across the beam cross-section adjacent to the connection components. This insight has implications for the use of experimental strain gauge data in estimating beam demands near the connections. These findings can be beneficial in informing instrumentation plans for future experimental studies on composite beams.

Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene (PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조)

  • Luo, Yuzi;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.