• 제목/요약/키워드: non-collocated system

검색결과 14건 처리시간 0.024초

주파수대역을 공유하는 Wi-Fi 시스템과 WiMAX 시스템이 결합된 써큘레이터 기반의 공존장치 성능 분석 (Performance Analysis of Circulator-Based Collocated Device for Wi-Fi System and WiMAX System in Shared Band)

  • 김동은;김종우;박수원;이승형;강철호;한기영;강현구
    • 대한전자공학회논문지TC
    • /
    • 제46권6호
    • /
    • pp.56-65
    • /
    • 2009
  • 공유 주파수대역을 사용하는 복수의 통신 시스템이 존재하는 경우 이를 공존(Coexistence)이라고 한다. 공존에는 상호간섭이 심각한 문제로 대두되는데 공존문제를 해결하기 위한 방법 중 공본하는 복수의 통신시스템들이 하나의 송수신기인 공존장치에 결합되어 동작할 때 이를 병립(Collocated)라고 한다. 병립인 WiMAX시스템과 Wi-Fi시스템을 비공동(Non-Collaborative)과 공동 (Collaborative)통신으로 모형화하고, 간섭을 최소화하기 위해 써큘레이터를 도입하여 그 구조와 성능에 대해 분석 및 제안한다.

H2 Design for Active Vibration Control of a Cantilever Beam

  • Park, Sooyoung;Joonhong Jung;Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.59.6-59
    • /
    • 2002
  • $\textbullet$ An experiment for the active vibration control of a cantilever beam is performed. $\textbullet$ An active damping system consisting of a laser sensor and an electromagnetic actuator. $\textbullet$ The design procedure and the performance analysis of an H2 controller for non-collocated systems. $\textbullet$ Simulations and experiments are performed to verify the performances of the controller. $\textbullet$ The optimal H2 controller is designed based on a reduced order model. $\textbullet$The Sensitivity function is introduced to analyze the Spillover phenomenon. $\textbullet$ Active vibration control, Cantilever beam, H2 controller, spillover, Non-collocated system.

  • PDF

압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어 (Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation)

  • 정남희;강호식;윤일성;송오섭
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling controller for feedback model updating)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling Controller for Feedback Model Updating)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감 (Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1104-1111
    • /
    • 2011
  • This paper investigates the filtered velocity feedback(FVF) controller for the reduction of the acoustic power radiated from a clamped beam. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be sorted out. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function(OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide bandbelow the tuning mode of the FVF controller.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감 (Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.377-383
    • /
    • 2011
  • This paper reports the filtered velocity feedback (FVF) controller to reduce the acoustic power from clamped beams. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be resolved. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function (OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide band below the tuning mode of the FVF controller.

  • PDF

다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어 (System identification and admittance model-based nanodynamic control of ultra-precision cutting process)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Filtered Velocity Feedback 제어기를 이용한 평판 능동진동제어 (Active Vibration Control of Plates Using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.940-950
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems at high frequencies due to non-collocated sensor/actuator configuration with the DVFB can be alleviated by the proposed FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The dynamics of a clamped plate under forces and moments and the FVF controllers are formulated. The stability of the control system and performance are investigated with the open loop transfer function(OLTF). It is found that the FVF controller has a higher gain margin than the corresponding DVFB controller owing to the rapid roll-off behavior at high frequencies. Although the gain margin cannot be fully utilized because of the enhancement at the high frequencies, the vibration at the modes lower than the tuning frequency is well controlled. This performance of the FVF controller is shown to be improved from that of the DVFB controller. It is, however, noted that the stability around the tuning frequency is very sensitive so that the enhancement in vibration level should be followed. The reduction performance at low frequencies using the FVF controller should be compromised with the enhancement in the vibration at high frequencies while designing the controller.