• Title/Summary/Keyword: non-adjacent form

Search Result 33, Processing Time 0.03 seconds

w-Bit Shifting Non-Adjacent Form Conversion

  • Hwang, Doo-Hee;Choi, Yoon-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3455-3474
    • /
    • 2018
  • As a unique form of signed-digit representation, non-adjacent form (NAF) minimizes Hamming weight by removing a stream of non-zero bits from the binary representation of positive integer. Thanks to this strong point, NAF has been used in various applications such as cryptography, packet filtering and so on. In this paper, to improve the NAF conversion speed of the $NAF_w$ algorithm, we propose a new NAF conversion algorithm, called w-bit Shifting Non-Adjacent Form($SNAF_w$), where w is width of scanning window. By skipping some unnecessary bit comparisons, the proposed algorithm improves the NAF conversion speed of the $NAF_w$ algorithm. To verify the excellence of the $SNAF_w$ algorithm, the $NAF_w$ algorithm and the $SNAF_w$ algorithm are implemented in the 8-bit microprocessor ATmega128. By measuring CPU cycle counter for the NAF conversion under various input patterns, we show that the $SNAF_2$ algorithm not only increases the NAF conversion speed by 24% on average but also reduces deviation in the NAF conversion time for each input pattern by 36%, compared to the $NAF_2$ algorithm. In addition, we show that $SNAF_w$ algorithm is always faster than $NAF_w$ algorithm, regardless of the size of w.

Fast Non-Adjacent Form (NAF) Conversion through a Bit-Stream Scan (비트열 스캔을 통한 고속의 Non-Adjacent Form (NAF) 변환)

  • Hwang, Doo-Hee;Shin, Jin-Myeong;Choi, Yoon-Ho
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • As a special form of the signed-digit representation, the NAF(non-adjacent form) minimizes the hamming weight by reducing the average density of the non-zero bits from the binary representation of the positive integer k. Due to this advantage, the NAF is used in various fields; in particular, it is actively used in cryptology. The existing NAF-conversion algorithm, however, is problematic because the conversion speed decreases when the LSB(least significant bit) frequently becomes "1" during the binary positive integer conversion process. This paper suggests a method for the improvement of the NAF-conversion speed for which the problems that occur in the existing NAF-conversion process are solved. To verify the performance improvement of the algorithm, the CPU cycle for the various inputs were measured on the ATmega128, a low-performance 8-bit microprocessor. The results of this study show that, compared with the existing algorithm, the suggested algorithm not only improved the processing speed of the major patterns by 20% or more on average, but it also reduced the NAF-conversion time by 13% or more.

Design and Implementation of Fast Scalar Multiplier of Elliptic Curve Cryptosystem using Window Non-Adjacent Form method (Window Non-Adajcent Form method를 이용한 타원곡선 암호시스템의 고속 스칼라 곱셈기 설계 및 구현)

  • 안경문;김종태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.345-348
    • /
    • 2002
  • This paper presents new fast scalar multiplier of elliptic curve cryptosystem that is regarded as next generation public-key crypto processor. For fast operation of scalar multiplication a finite field multiplier is designed with LFSR type of bit serial structure and a finite field inversion operator uses extended binary euclidean algorithm for reducing one multiplying operation on point operation. Also the use of the window non-adjacent form (WNAF) method can reduce addition operation of each other different points.

  • PDF

NAP and Optimal Normal Basis of Type II and Efficient Exponentiation in $GF(2^n)$ (NAF와 타입 II 최적정규기저를 이용한 $GF(2^n)$ 상의 효율적인 지수승 연산)

  • Kwon, Soon-Hak;Go, Byeong-Hwan;Koo, Nam-Hun;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.21-27
    • /
    • 2009
  • We present an efficient exponentiation algorithm for a finite field $GF(2^n)$ determined by an optimal normal basis of type II using signed digit representation of the exponents. Our signed digit representation uses a non-adjacent form (NAF) for $GF(2^n)$. It is generally believed that a signed digit representation is hard to use when a normal basis is given because the inversion of a normal element requires quite a computational delay. However our result shows that a special normal basis, called an optimal normal basis (ONB) of type II, has a nice property which admits an effective exponentiation using signed digit representations of the exponents.

An Analysis of Inverse Kinematics and Singular Configuration for Six Axes Robot with Wrist Offset (ICEIC'04)

  • Lee YoungDae;Cho KumBae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.263-268
    • /
    • 2004
  • The inverse kinematics problem is to find a set of joint variable values that will place the end effector of a robot manipulator into a given pose. Pieper has shown that a sufficient condition for a manipulator to have a closed form solution is that three adjacent joint axes intersects, hence the six axes robot with spherical wrist allows closed form solution. But many industrial robots have a non-spherical wrist to provide a stronger wrist configuration so that they can handle heavy payloads. Also, the use of a non-spherical wrist can result in a cheap and simple wrist arrangement than when all three axes intersect at a common point. In these cases, closed form solutions cannot be found. Therefore numerical technique must be used to solve the inverse kinematics equations. This paper proposes a new algorithm that can be used for finding inverse kinematics solution of the six axes robot with non-spherical wrist. Computer simulations are provided to prove the usefulness of our method.

  • PDF

Gingival recontouring by provisional implant restoration for optimal emergence profile: report of two cases

  • Son, Mee-Kyoung;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.6
    • /
    • pp.302-308
    • /
    • 2011
  • Purpose: The emergence profile concept of an implant restoration is one of the most important factors for the esthetics and health of peri-implant soft tissue. This paper reports on two cases of gingival recontouring by the fabrication of a provisional implant restoration to produce an optimal emergence profile of a definitive implant restoration. Methods: After the second surgery, a preliminary impression was taken to make a soft tissue working cast. A provisional crown was fabricated on the model. The soft tissue around the implant fixture on the model was trimmed with a laboratory scalpel to produce the scalloped gingival form. Light curing composite resin was added to fill the space between the provisional crown base and trimmed gingiva. After 4 to 6 weeks, the final impression was taken to make a definitive implant restoration, where the soft tissue and tooth form were in harmony with the adjacent tooth. Results: At the first insertion of the provisional restoration, gum bleaching revealed gingival pressure. Four to six weeks after placing the provisional restoration, the gum reformed with harmony between the peri-implant gingiva and adjacent dentition. Conclusions: Gingival recontouring with a provisional implant restoration is a non-surgical and non-procedure-sensitive method. The implant restoration with the optimal emergence profile is expected to provide superior esthetic and functional results.

Corneal Squamous Cell Carcinoma Presumed to Arise from Corneal Fibrosis in a Shih-Tzu Dog

  • Kim, Eunjik;Park, Youngwoo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.6
    • /
    • pp.311-314
    • /
    • 2018
  • Squamous cell carcinoma (SCC) is a form of neoplasm that origins from the epithelial surface of many organs. Ocular occurrence in small animals is rare, especially in the central cornea without the involvement of limbus or conjunctiva. In the current case, a 10-year-old, spayed female Shih-Tzu was presented with a central corneal mass. Through an ophthalmic examination the sign of corneal scarring around the mass was found. Pink fleshy lesion that protruded outward was removed through superficial keratectomy. The mass with the size of $8.5{\times}6.5$ millimeter was histopathologically diagnosed as corneal SCC infiltrating not only the epithelium, but also the superficial corneal stroma with surrounding superficial lymphoplasmacytic and neutrophilic chronic keratitis. Also, the adjacent, non-affected corneal epithelium was markedly hyperplastic and keratinized; the adjacent stroma was moderately vascularized and fibrotic. The pulse-dose therapy using 1% topical 5-flourouracil were applied for five cycles. The tumor has not recurred through nine months of follow-up time.

Dynamic response of adjacent structures connected by friction damper

  • Patel, C.C.;Jangid, R.S.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.149-169
    • /
    • 2011
  • Dynamic response of two adjacent single degree-of-freedom (SDOF) structures connected with friction damper under base excitation is investigated. The base excitation is modeled as a stationary white-noise random process. As the force-deformation behavior of friction damper is non linear, the dynamic response of connected structures is obtained using the equivalent linearization technique. It is observed that there exists an optimum value of the limiting frictional force of the damper for which the mean square displacement and the mean square absolute acceleration responses of the connected structures attains the minimum value. The close form expressions for the optimum value of damper frictional force and corresponding mean square responses of the coupled undamped structures are derived. These expressions can be used for initial optimal design of the friction damper for connected structures. A parametric study is also carried out to investigate the influence of system parameters such as frequency ratio and mass ratio on the response of the coupled structures. It has been observed that the frequency ratio has significant effect on the performance of the friction damper, whereas the effects of mass ratio are marginal. Finally, the verification of the derived close from expressions is made by correlating the response of connected structures under real earthquake excitations.

Robust Image Hashing for Tamper Detection Using Non-Negative Matrix Factorization

  • Tang, Zhenjun;Wang, Shuozhong;Zhang, Xinpeng;Wei, Weimin;Su, Shengjun
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • The invariance relation existing in the non-negative matrix factorization (NMF) is used for constructing robust image hashes in this work. The image is first re-scaled to a fixed size. Low-pass filtering is performed on the luminance component of the re-sized image to produce a normalized matrix. Entries in the normalized matrix are pseudo-randomly re-arranged under the control of a secret key to generate a secondary image. Non-negative matrix factorization is then performed on the secondary image. As the relation between most pairs of adjacent entries in the NMF's coefficient matrix is basically invariant to ordinary image processing, a coarse quantization scheme is devised to compress the extracted features contained in the coefficient matrix. The obtained binary elements are used to form the image hash after being scrambled based on another key. Similarity between hashes is measured by the Hamming distance. Experimental results show that the proposed scheme is robust against perceptually acceptable modifications to the image such as Gaussian filtering, moderate noise contamination, JPEG compression, re-scaling, and watermark embedding. Hashes of different images have very low collision probability. Tampering to local image areas can be detected by comparing the Hamming distance with a predetermined threshold, indicating the usefulness of the technique in digital forensics.

  • PDF

Surface Wear Monitoring with a Non-Vibrating Capacitance Probe

  • Zanoria, E.S.;Hamall, K.;Danyluk, S.;Zharin, A.L.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.40-46
    • /
    • 1995
  • This study concerns the design and development of the non-vibrating capacitance probe which could be used as a non-contact sensor for tribological wear. This device detects surface charge through temporal variation in the work function of a material. Experiments are performed to demonstrate the operation of the probe on a roating aluminum shaft. The reference electrode of the probe, made of lead, is placed adjacent (< 1.25-mm distance) to the shaft. Both surfaces which are electrically connected, form a capacitor. An artificial spatial variation in the work function is imposed on the shaft surface by coating a segment along the shaft circumference with a colloidal silver paint. As the shaft rotates, the reference electode senses changing contact potential difference with the shaft surface, owing to compositional variation. Temporal variation in the contact potential difference induces a current through the electrical connection. This current is amplified and converted to a voltage signal by an electoronic circuit with an operational amplifier. The magnitude of the signal decreases asymptotically with the electrode-shaft distance and increases linearly with the rotational frequency. These results are consistent with the theoretical model. Potential applications of the probe on wear monitoring are proposed.