• 제목/요약/키워드: non-Newtonian liquid

검색결과 48건 처리시간 0.026초

엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석 (Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil)

  • 전상명
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

아몰퍼스 판재 성형의 스프링 백에 관한 연구 (A Study on Spring Back in Sheet Forming of Amorphous Alloys)

  • 윤상헌;이용신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구 (Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제27권4호
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석 (Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.

아몰퍼스 고온 판재성형시 스프링백 (Spring Back in Amorphous Sheet Forming at High Temperature)

  • 이용신
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구 (A Study on the Flow of Drilling Fluids in Slim hole Annuli)

  • 서병택;우남섭;황영규
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.

Sodium bis-(2-ethylhexyl)sulfosuccinate-water 미셀의 틱소트로 피와 다일레턴시 유동단위에 대한 비뉴톤 유동메카니즘 (Non-Newtonian Flow Mechanism for Thixotropic and Dilatant Flow Units of Sodium bis-(2-ethylhexyl)sulfosuccinate-water Micelles)

  • 김남정
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.540-548
    • /
    • 2016
  • sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정의 비뉴톤 유동곡선을 cone-plate 레오메타를 사용하여 여러 농도와 온도 조건에서 얻었다. 이러한 비뉴톤 유동곡선을 비뉴톤 유동식에 적용하여 유동파라메타를 구하였다. 특별히 주목할 점은 액정시료의 전단속도에 대한 전단응력은 증가와 감소에서 틱소트로피와 다일레턴시 현상을 보여 hysteresis loop를 나타내고 있다는 점이다. sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정은 작은 전단속도에서는 약한 젤 현상을 보이지만 응력이 한계 응력 이상에서는 비 선형 점탄성 성질을 나타낸다. 전단속도 감소에서 분산계는 전단속도가 증가할 때 측정된 값 보다는 큰 구조변화와 전단응력을 유지하고 있다.

고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교 (The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성 (Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents)

  • 황태진;이인철;김정훈;김도헌;구자예
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids

  • Walters, K.;Tamaddon-Jahromi, H.R.;Webster, M.F.;Tome, M.F.;McKee, S.
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.225-233
    • /
    • 2009
  • In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences $N_1$ and $N_2$, especially $N_1$, and the extensional viscosity $\eta_E$. In this paper, we shall be mainly interested in 'constant-viscosity' Boger fluids, and, accordingly, we shall limit attention to $N_1$ and $\eta_E$. We shall concentrate on two important flows - axisymmetric contraction flow and "splashing" (particularly that which arises when a liquid drop falls onto the tree surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high $\eta_E$ can retard the flow, whereas high $N_1$ can have the opposite effect. In the splashing experiment, high $\eta_E$ can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.