DOI QR코드

DOI QR Code

Non-Newtonian Flow Mechanism for Thixotropic and Dilatant Flow Units of Sodium bis-(2-ethylhexyl)sulfosuccinate-water Micelles

Sodium bis-(2-ethylhexyl)sulfosuccinate-water 미셀의 틱소트로 피와 다일레턴시 유동단위에 대한 비뉴톤 유동메카니즘

  • Received : 2016.07.29
  • Accepted : 2016.09.26
  • Published : 2016.09.30

Abstract

The non-Newtonian flow curves of sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for AOT-water lamellar liquid crystal samples, the rheological parameters were obtained. Particular attention is given to the hysteresis loop detected when the liquid crystal samples are shear under increasing-decreasing shear stress modes which result in thixotropic and dilatant behavior. Sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals behave as weak gels when they are subjected to shear flow, but when the applied stress surpasses the yield stress, they exhibit non-linear viscoelasticity. Upon decreasing shear rate, the dispersion still preserves much of its structure and consequently its shear stress remains higher than the values measured in the increasing shear rate mode.

sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정의 비뉴톤 유동곡선을 cone-plate 레오메타를 사용하여 여러 농도와 온도 조건에서 얻었다. 이러한 비뉴톤 유동곡선을 비뉴톤 유동식에 적용하여 유동파라메타를 구하였다. 특별히 주목할 점은 액정시료의 전단속도에 대한 전단응력은 증가와 감소에서 틱소트로피와 다일레턴시 현상을 보여 hysteresis loop를 나타내고 있다는 점이다. sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정은 작은 전단속도에서는 약한 젤 현상을 보이지만 응력이 한계 응력 이상에서는 비 선형 점탄성 성질을 나타낸다. 전단속도 감소에서 분산계는 전단속도가 증가할 때 측정된 값 보다는 큰 구조변화와 전단응력을 유지하고 있다.

Keywords

References

  1. J. H. Bang, N. J. Kim, S. W. Choi, E. R. Kim, and S. J. Hahn, "The equilibrium between dilatant and thixotropic flow units", Bull. Korean Chem. Soc., 17, 262(1996).
  2. T. Lemke, F. Bagusat, K. Kohnke, K. Husemann, and H. J. Mogel, "Time dependent viscosity of concentrated alumina suspensions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 150, 283 (1999).
  3. J. Mewis and R. de Bleyser, "Dynamic behavior of thixotropic systems", J. Colloid and Interface Sci., 40(3), 360(1972). https://doi.org/10.1016/0021-9797(72)90345-1
  4. I. Wagstaff and C.E. Chaffey, "Shear thinning and thickening rheology : I. Concentrated acrylic dispersions", J. Colloid and Interface Sci., 59, 53 (1977). https://doi.org/10.1016/0021-9797(77)90338-1
  5. C. H. Lee, V. Moturi, Y. Lee, "Thixotropic property in pharmaceutical formulations", J. of Controlled Release, 136, 88 (2009). https://doi.org/10.1016/j.jconrel.2009.02.013
  6. J. Lin, Z. Wen, Y. Liu, X. Xu, S. Song, N. Li, "Rheological behavior of aqueous polymer-plasticized ${\gamma}-LiAlO_2$ pastes for plastic forming", Ceramics International, 35, 2289 (2009). https://doi.org/10.1016/j.ceramint.2009.01.001
  7. R. Durairaj, S. Ramesh, S. Mallik, A. Seman, and N. Ekere, "Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes", Materials & Design, 30, 3812 (2009). https://doi.org/10.1016/j.matdes.2009.01.028
  8. B. S. Ghotra, T. Vasanthan, and F. Temelli, "Rheological properties of aqueous blends of high purity barley $\beta$-glucan with high purity commercial food gums", Food Chemistry, 117, 417 (2009). https://doi.org/10.1016/j.foodchem.2009.04.027
  9. N .J. Kim, "Thixotropic properties of polyacrylamide hydrogels with various synthetic conditions", J. of the Korean Chemical Soc., 50, 447 (2006). https://doi.org/10.5012/jkcs.2006.50.6.447
  10. N .J. Kim, "Thixotropic equation and rheological parameters on non-Newtonian flow mechanism", J. of Korean Oil Chemists' Soc., 32, 386 (2015). https://doi.org/10.12925/jkocs.2015.32.3.386
  11. S. J. Hahn and T. Ree and H. Eyring, "A theory of thixotropy", JNLGI Spokesman, 21, 12(1957).
  12. S. J. Hahn and T. Ree and H. Eyring, "Flow mechanism of thixotropic substances", JNLGI Spokesman, 23, 129(1959).
  13. Y. S. Lee and J. Ree and T. Ree, "Effect of zeta-potential on the viscosity of clay-water suspension", Bull. Korean Chem. Soc., 3(3), 83(1982).
  14. A. D. Moriana, T. Tian, V. Sencadas and W. Li, "Comparison of rheological behaviors with fumed silca-based shear thickening fluids", Korea-Australia Rheology J., 28(3), 197(2016). https://doi.org/10.1007/s13367-016-0020-9
  15. X. Gong, Y. Xu, W. Zhu, S. Xuan and W. Jiang, "Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric", J. Compos Mater., 48, 641(2014). https://doi.org/10.1177/0021998313476525