• Title/Summary/Keyword: non point source

Search Result 716, Processing Time 0.031 seconds

Policy for Establishment of Green Infrastructure (녹색 인프라 구축을 위한 정책)

  • Park, Jae-Chul;Yang, Hong-Mo;Jang, Byoung-Kwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.43-50
    • /
    • 2012
  • The Green Infrastructure Framework refers to an interconnected network formed by greenways that links gardens, parks, green spaces, streams, wetlands, agricultural lands, and green belts. Green infrastructure supports diverse functions to environment, provides various benefits to people, and helps in the community's health and viability. It can store stormwater runoff and abate its non-point source pollutants. Due to its advantages and profits, advanced countries in environment policies have adopted green infrastructure in planning and implementing urban and regional development. The Korean government and municipalities have focused upon grey infrastructure investment in the past, which causes occurrence of natural disasters such as draught, flood, and landslides, degradation of water and air quality, decline of biodiversity, and even inhibition of economic activities. In order to alleviate these problems, it is requested to formulate and implement policies for green infrastructure at the national government level. USA and Korean situation of green infrastructure were investigated; forty components of green infrastructure were drawn. Nine policies utilized in the USA cases were identified, which are applicable to Korea. Among them, five policies can be implemented in public sector and four in private one. The green infrastructure law needed in Korea was suggested. The amendments of laws regarding green infrastructure and alternatives expending it were proposed.

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Analysis of Pollution Characteristics in the Mainstream and Its Tributaries of Gongneung Stream Using Water Quality Index and Pollution Load Data (통합수질지수 및 오염부하자료를 이용한 공릉천 유입지천과 본류의 오염특성 분석)

  • Yu, Jae-Hyun;Lee, Han-Saem;Lim, Byung-Ran;Kang, Joo-Hyoung;Ahn, Tae-Ung;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.125-136
    • /
    • 2020
  • In this study, we identified the major pollution-zones of the mainstream and its tributaries of Gongneung stream and investigated their pollution sources based on water quality, flowrate and pollution-load data of the stream having the characteristics of the urban-rural complex to examine the effect of the tributaries on the water quality changes in the mainstream. The water quality and flowrate data were collected for 10 months (2018 ~ 2019) at 3 points of mainstream and ten tributaries. Water quality index (WQI), load duration curve (LDC), discharge load density (DLD)and delivery ratios for each tributary were obtained so as to investigate the pollution characteristics and some of the information visualized on GIS. The main pollution-zone in the Gongneung stream was in the middle and lower streams, and the tributaries that may affect the pollution of the area were JS, JY, SL and SM. JS and SL had low WQI levels (34.7/37.5) and DLD (kg/d/㎢) of BOD and T-P were relatively high in JY (99.2/6.00) and SL (60.0/2.07). BOD and T-P delivery ratios in JS were high (0.94/0.83), suggesting that JS had significant influence on the water quality of the main pollution-zone in the Gongneung stream. Meanwhile, SM having a high T-P delivery ratio (0.97) was found to be more affected by the non-point source due to the higher LDC excess rate (%) in the low flow compared to high flow. This study provides basic data on the water quality and pollution characteristics of the Gongneung stream, and the analysis results are expected to be used as examples for identifying the main pollution-zone and tributaries of stream and their pollution sources.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Simulation of sediment reduction effects of VFS in uplands of Saemangeum watershed (새만금유역 밭경지 초생대 유사저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.535-542
    • /
    • 2018
  • The study was intended to simulate the sediment reduction effects of the Vegetative Filter Strip (VFS) in uplands of Saemangeum watershed through VFSMOD-W model application. The model was calibrated by using the field data and the simulation scenarios were designed based on the investigation of uplands characteristics in Saemangeum watershed. The simulation scenarios were considered various size and slope of uplands including 1 ha, 5 ha, 10 ha of field size with width-length ratio of 1 : 1 having 7% and 15% of slopes under the daily rainfall of 50 mm, 100 mm, 150 mm, and 200 mm in order to mimic the different fields conditions. The effluent reduction ranged from 2.9~13.5% and 2.9~12.1% for runoff, and 33.8~97.0% and 27.1~85.9% for sediment under the field's slope of 7% and 15%, respectively. The VFS reduction effects showed different degree of influence from field size, slope, rainfall amounts. Based on the simulated results, the sediment contributing non-point source pollution expected to be reduced in the condition of VFS constructed 10% of fields in outlet of less than 10 ha of uplands having less than 15% of the slope.

A Case Study Stormwater Treatment by Channel-Type Wetland Constructed on the Flood Plane of the Stream (하천 고수부지에 설치한 수로형 인공습지에 의한 강우 유출수 처리에 관한 연구)

  • Kim, Piljoo;Han, Euilyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • Researches about NPS(Non-point Pollution Source) reduction have been widely carried out in recent years. A pilot channel-type constructed wetland (wet swale) was constructed in Rongyin area to treat stormwater generated from a green house agro-land of 22.7 ha. From 2006 to 2008, monitoring was conducted to evaluate its performance on the removal effect for organic pollutants as well as nutrients. Totally, sampling trips of 17 rainfall events were made and they covered most types of storm events in Korea. The channel-type constructed wetland have average removal efficiencies of 78.3~92.0%, 56.4~66.1%, 28.2~45.5% and 50.6~66.4% for SS, COD, TN and TP, respectively. According to four methods for estimating the removal efficiency, the average efficiencies of TSS, COD, TN and TP are 86.0%, 60.1%, 30.1% and 53.5%, respectively. From 2006 to 2008, annual efficiency improved due to infiltration potential increase. It was found that most of the pollutants removed in this channel type of wetland was particulate solids bound pollutants, which is assumed fact that it lacks of physico-chemical treatment conditions which are commonly observed in the retention type of constructed wetlands.

Dynamics of Total Phosphorus and Attached Bacteria in a Porous Medium Concentrating Nutrients from Low-Nutrient Water (저농도 영양염류를 농축하는 여재에서 총인과 부착세균의 변화)

  • Kim, Ju-Young;Nam, Jong-Hyun;Jung, Da-Woon;Cho, Ahn-Na;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A nutrient-concentrating system was operated to retrieve total phosphorus efficiently from a non-point pollution source. Attached bacteria were expected to play an important role in the system. Phosphorous was concentrated by formation of bacterial biofilms on rubberized coconut fiber media of the system. While concentration of total phosphorus (TP) ranged merely 0.12~0.35 mg/L in the stream water, TP levels in pore water and the media were 0.45~0.86 mg/L and 40.91~242.71 mg/kg, respectively. Total bacterial number (TBN) ranged $0.3\sim2.3\times10^6$ cells/ml in stream water, $0.4\sim4.4\times10^6$ cells/ml in pore water and $0.8\sim1.9\times10^9$ cells/g in media. There was a close correlation between TP and TBN. Based on band profiles in DGGE analyses, bacterial communities in the media were different from that in the stream water. Clostridium spp. were abundant in the stream water while Aquabacterium spp. were dominant species in early stages of biofilm formation in the media. The genera predominant in matured biofilms of the media were Clostridium and Enterococcus.

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Non-Point Source Mitigation Analysis by Applying Riparian Area in Nakdong River Using SWAT (SWAT을 이용한 수변구역 조성에 따른 낙동강유역의 비점오염원 저감효과 분석)

  • Han, Kun-Yeun;Kim, Dong-Il;Park, Kyung-Ok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.597-601
    • /
    • 2007
  • 1990년대 정부는 비점오염원 부하의 심각성을 인식하여 1995년부터 한강, 낙동강, 금강 그리고 영산강 이른바 4대강 유역에 대한 비점오염원의 조사연구사업을 실시하였다. 그러나 비점오염원의 경우 처리시설만으로는 처리하는데 한계가 있다는 특성 때문에 도시지역과 비도시지역에 대한 비점오염원을 관리하기 위한 대책 마련과 제도적 관리방안의 수립이 시급한 실정이었다. 따라서 본 연구는 토지매수가 상수원 수질개선에 미치는 영향 및 효과분석을 하고, 토지매수를 통한 비점오염물질 저감효과 분석을 위해 토지매수에 따른 비점오염원에 의한 오염물질 변화 해석 및 토지매수에 따른 최적 수변녹지대 조성을 위한 식생 효과를 분석 하였다. 수변구역 내의 비점오염물질의 공공수역 유입을 억제하기 위한 방법들 중에서 보편적이고 자연친화적인 방법이 수변구역(riparian buffer strip), 또는 수변완충구역(riparian buffer zone)을 조성하여 관리하는 것이다. 수변구역은 하천유역의 토양, 식물, 동물을 포함하는 시스템으로서 하천흐름을 조절하고, 물을 저장하며, 물에서 유해한 물질을 제거할 뿐만 아니라, 수중 및 육상의 식물과 동물을 위한 서식처를 제공하는 등 수질과 수량 그리고 생태계 측면에서 중요한 지역이라고 할 수 있다. 따라서 현재 낙동강 수계에 수변구역 조성시의 수질개선효과 연구를 수행하였다. 토지매수가 상수원 수질개선에 미치는 영향 및 효과분석을 위해서 SWAT 모형을 적용하여 유량 및 수질모의를 실시하였다. 유역내 수변구역을 조성시 수변구역의 범위가 증가함에 따라 비점오염원의 감소가 크게 나타나고 있었다.로 대부분의 가정(家庭)은 아침 식사로 밥을 좋아하였다. (8) 편식을 고치는 것이 어렵다고 하였으며, 어린이 간식에 대하여는 깊은 관심을 나타냈다. 2. 영양교육(營養敎育) 현황실태(現況實態) (1)식생활(食生活)에 필요한 지식(知識)은 신문이나 잡지, 라디오와 텔레비젼을 통해서 대체로 얻고 있다. (2) 음식과 영양섭취와의 관계성이 있다고 답한 주부(主婦)는 70.8% 이었으며, 가족(家族)의 영양(營養)에 대하여 늘 생각하는 주부는 60% 이었다. 3. 식품섭취 빈도 거의 먹지 않는 식품(食品)으로 버터가 43.%로 가장 높았고, 육류의 섭취율이 낮았다. 반면, 김치와 채소류의 섭취율은 높았다. 집단간의 상관도를 보면 교육별로 김치, 장아찌, 콩이 각각 p>0.5 수준에서 유의한 차가 없었고, 나머지는 유의한 차가 있었다. 연령별로는 멸치가 유의한 차가 없었고(p>0.5), 수입별로는 콩이 유의한 차가 없었다(p>0.5). 4. 영양지식(營養知識) 검토 가정생활(家庭生活)에 필요(必要)한 일반적(一般的)인 영양지식(營養知識)은 대체적으로 낮은 편이었다. 어린이 영양, 편식의 해로움, 비만증의 해로움, 임신부 그리고 수유부 영양에 대하여는 일반적으로 알고 있다고 하였으며, 그다음으로 이유기 영양, 어린이 발육에 필요한 식품, 식품과 영양소와의 관계, 우유의 성분, 노인영양에 대하여 잘 알고 있는 비율이 낮았으며, 인체의 영양소, 식단작성여부, 간식의 이론, 식품감별법에 대하여는 가장 낮은 비율을 나타냈다. 각 영양지식은 교육정도가 높을수록 영양지식이 높았고, 교육별 집단간의 유의한 차가 나타났다. (0.001

  • PDF