• 제목/요약/키워드: non newtonian fluid

검색결과 197건 처리시간 0.03초

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct

  • Sohn Chang-Hyun;Chang Jae-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.382-390
    • /
    • 2006
  • The present study proposes a modified temperature-dependent non-Newtonian viscosity model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent viscosity, buoyancy, and secondary flow caused by the second normal stress difference are considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model give good agreement with the experimental results. The heat transfer enhancement of viscoelastic fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

수정멱법칙 비뉴턴유체의 협착관내 유동장해석 (Flow Analysis of the Modified Power-Law Non-Newtonian Fluids in the Stenotic Tubes)

  • 서상호;유상신;장남일
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.227-236
    • /
    • 1994
  • Steady flows of Newtonian and non-Newtonian fluids in the stenotic tubes with various stenotic shapes are numerically simulated. Validity of the modified power-law model as a constitutive equation for the purely viscous non-Newtonian fluid is discussed and the results of the power-law model are compared with those of the Carreau model, the Powell-Eyring model and experimental data for blood. Flow characteristics and reattachment lengths for non-Newtonian fluids in the stenotic tubes are presented extensively. Also, the analysis is extended to predict the influences of diameter ratio, stenosis spacing, number of stenosis and Reynolds number on the flow characteristics in the multiple stenotic tubes.

  • PDF

엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석 (Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil)

  • 전상명
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석 (Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.

토석류 이동의 레올로지적 특성 (Rheological Characteristics of Debris Flows)

  • 김상규;서홍석
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.125-132
    • /
    • 1997
  • 토석류는 다양한 크기의 흙 입자와 물이 고루 섞여 점성을 가진 유체처럼 하방향으로 이동한다는 사실이 관찰되었다. 이 관찰로부터 토석류를 비선행적인 점도를 가진 비뉴톤 유체처럼 거동하는 것으로 간주할 수 있다. 이 논문에서는 토석류의 레올로지적 특성을 규명하기 위해 산사태 현장에서 채취한 시료를 가지고 점도계를 사용하여 일련의 점도시험을 수행하였다. 그 결과, 토석류는 비뉴톤 유체 중 빙함 소성 모델로 거동한다는 사실이 밝혀졌다. 이 모델을 이용하면 토 석류의 이동을 예측할 수 있다.

  • PDF

터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구 (Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제27권4호
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

A Novel Viscosity Measurement Technique Using a Falling Ball Viscometer with a High-speed Camera

  • Jo, Won-Jin;Pak, Bock-Choon;Lee, Dong-Hwan
    • KSTLE International Journal
    • /
    • 제8권1호
    • /
    • pp.16-20
    • /
    • 2007
  • This study introduces a new approach to a falling ball viscometer by using a high speed motion camera to measure the viscosity of both Newtonian and non-Newtonian fluids from the velocity-time data. This method involves capturing continuous photographs of the entire falling motion of the ball as the ball accelerates from the rest to the terminal velocity state. The velocity of a falling ball was determined from the distance traversed by the ball by examining video tape frame by frame using the marked graduations on the surface of the cylinder. Each frame was pre-set at 0.01. Glycerin 74% was used for Newtonian solution, while aqueous solutions of Polyacrylamide and Carboxymethyl Cellulose were for non-Newtonian solutions. The experimental viscosity data were in good agreements with the results obtained from a rotating Brookfield viscometer.

준설토의 관로유송 (Pipeline Transport of Dredged Soils)

  • 유동훈;김성오;선우중호
    • 한국해안해양공학회지
    • /
    • 제8권1호
    • /
    • pp.114-122
    • /
    • 1996
  • 간척지 매립에 있어서 최근에는 토사를 해저에서 준설하여 파이프라인을 통해 유송시켜 매립시키는 방법이 많이 쓰여지고 있다. 이러한 경우 토사와 혼합된 유체는 slurry fluid의 성질을 지닌다. slurry fluid는 점성도가 독특한 양상을 보이기 때문에 준설토 유송의 관련수치 산정에는 slurry flow 특성을 반영한 관마찰계수 산정식을 사용해야 한다. 준설토를 함유한 slurry fluid는 주로 함유된 입자의 크기에 따라 Newtonian fluid 또는 non-Newtonian fluid 특성을 갖는데, 본 연구에서는 각 특성조건별로 관마찰계수 산정식을 지수함수 형태로 제시하였으며, 이를 이용하여 준설토 유송을 위한 용량산정에 있어 펌프동력 뿐만 아니라 관경 및 유량에 대하여도 양해법 형태의 산정식을 개발하였다.

  • PDF

낭상 뇌동맥류 혈류유동에서 비뉴우토니안 유체 모델의 영향 (EFFEECTS OF NON-NEWTONIAN FLUID MODEL ON HEMODYNAMICS IN CEREBRAL SACCULAR ANEURYSMS)

  • 박진석;이상욱
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.81-87
    • /
    • 2011
  • The importance of shear thinning non-Newtonian blood rheology on the hemodynamic characteristics of idealized cerebral saccular aneurysms were investigated by carrying out CFD simulations assuming two different non-Newtonian rheology models (Carreau and Ballyk models). To explore effects of vessel curvature, a straight and a curved vessel geometry were considered. The wall shear stress(WSS), relative residence time(RRT) and velocity distribution were compared at the different phases of cardiac cycle. As expected, blood entered the aneurysm at the distal neck and created large vortex in both aneurysms, but with higher momentum on the curved vessel. Hemodynamic characteristics such as WSS, and RRT exhibited only minor effects by choice of different rheological models although Ballyk model produced relatively higher effects. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the hemodynamic characteristics, in particular, WSS-based parameters, considering the current accuracy level of medical image of cerebral aneurysm.