• Title/Summary/Keyword: non newtonian fluid

Search Result 197, Processing Time 0.033 seconds

Characteristics of Shear-Thinning Fluid Viscosity under Traversal Vibration (진동장에서의 전단박화 유체 점도의 특성 연구)

  • Ku Yun-Hee;Lee Ji-Hyung;Shin Sehyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.317-320
    • /
    • 2002
  • The effect of vibration on the viscosity of a shear-thinning fluid was investigated with a newly designed pressure-scanning capillary viscometer. The viscometer was designed to measure non-Newtonian viscosity continuously over a range of shear rates at a time. Low frequency vibration was applied perpendicularly to the direction of the flow. The effect of the transversal vibration was investigated for both Newtonian fluids and non-Newtonian fluids. The experimental results showed that the vibration had no effect on the viscosity of the Newtonian fluids. However, the vibration caused a significant reduction of the shear-thinning fluid viscosity. The viscosity reduction was strongly dependent on both vibration frequency and shear rate. In addition, the viscosity reduction was affected by the amplitude of vibration, and, the bigger amplitude applied, the more viscosity reduction occurred.

  • PDF

Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes (이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

  • PDF

A Study on the Flow Characteristics in the Stenosed Tube of the Non-Newtonian Fluids (비뉴튼유체의 협착관내 유동 특성에 관한 연구)

  • Park, S.A.;Yoon, J.B.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.342-350
    • /
    • 1992
  • An experimental investigation of the stenosis effects on the pressure drop and flow change in the internal flow is presented. Stainless steel tubes of small diameter(3.175mm, 3.4mm) are used for the test section of the flow loop. Percent contraction ranges from 35% to 83% and the stenosis length ratio (L/d) is varied from 2.8 to 8. Water and aqueous glycerol solutions are used for Newtonian fluids and polymer solutions of Separan AP-273 (500 wppm, 1000 wppm) for non-Newtonian fluids. Pressure loss coefficients of non-Newtonian fluids decrease just as those of Newtonian fluids. The loss coefficients of Newtonian and non-Newtonian fluids increase as the percent contraction increases and the loss coefficients of non-Newtonian fluids are larger than those of Newtonian fluids for the same stenosed tube. The loss coefficient increases as the stenosis length ratio increases.

  • PDF

Analysis of Geometric Parameters for Fully Developed Laminar Flow Between Cylinders Arranged in Regular Array (정규배열내의 실린더 사이에서의 완전발달된 층류 유동의 기하학적 계수의 해석)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1037-1049
    • /
    • 2001
  • Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular cross section in compact heat exchanges. Analytical solution was developed for prediction of the flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging cross section. The geometric parameters and function of shear describing the behavior of the fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-radius ratio.

  • PDF

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.

Experimental investigation on impinging behaviors of non-Newtonian and viscous droplets through electrohydrodynamic atomization (전기수력학적 분무 방식을 통해 토출된 비뉴튼성 및 점성유체의 충돌 거동에 대한 실험적 연구)

  • Seo, Kyoung Duck;Hong, Jiwoo
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.47-51
    • /
    • 2018
  • The stable deposition of impinging droplets on non-wetting substrates is of great importance for numerous industrial and scientific applications such as coating techniques, inkjet printing, spray cooling of heated surfaces. In this work, we systematically investigate impinging behaviors of non-Newtonian and viscous droplets ejected by electrohydrodynamic atomization.

Numerical Analysis of Branch Flows for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체에 대한 분기관 유동의 수치해석)

  • 서상호;유상신;노형운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2762-2772
    • /
    • 1994
  • Branch flows for Newtonian and non-Newtonian fluids are simulated by the finite volume method. The modified power-law model is employed as a constitutive equation of the non-Newtonian fluids. Numerical analyses are focused on understanding of flow patterns for different values of branch angles, diameter ratios and Reynolds numbers. The numerical results are compared with the existing experimental data. The calculated velocity profiles and pressure variations are in good agreement with available experimental results.

Deformation of multiple non-Newtonian drops in the entrance region

  • Kim, See-Jo;Kim, Sang-Dae;Youngdon Kwon
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, with the finite element method we numerically investigate the deformation of liquid drops surrounded by Newtonian or non-Newtonian viscous medium in the axisymmetric contraction flow. 1, 2 or 4 Newtonian or non-Newtonian drops are considered and the truncated power-law model is applied In order to describe non-Newtonian viscous behavior for both fluids. In this type of flow the drop exhibits considerably large deformation, and thus techniques of unstructured mesh generation and auto-remeshing are employed to accurately express the fluid mechanical behavior. We examine the deformation pattern of liquid drops with viscosity dependence different from that of the surrounding medium and also explain their interactions by comparing relative position or speed of drop front.

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.