• 제목/요약/키워드: nominal tensile strength

검색결과 53건 처리시간 0.019초

콘크리트의 비틀림강도를 포함한 RC보의 공칭비틀림강도 (Nominal Torsional Moment Strength of RC Beam with Torsional Moment Strength of Concrete)

  • 박창규
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.73-84
    • /
    • 2002
  • Nominal shear strength of concrete beam is the combined strength of concrete shear strength and steel shear strength in current design code. But Torsional moment strength of concrete is neglected in calculation of the nominal torsional moment strength of reinforced concrete beam in current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But the tensile stresses of concrete after cracking are neglected in bending and torsion in design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded to the nominal torsional moment strength of reinforced concrete beam. To verify the validity of the proposed model, the nominal torsional moment strengths according to CEB, two ACI codes(89, 99) and proposed model are compared to experimental torsional strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도 (Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete)

  • 박창규
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-32
    • /
    • 2002
  • 전단문제에서는 일부 설계기준(AASHTO 1994)에 이미 수정압축장이론이 도입되었다. 그리고 현행 콘크리트 설계기준에는 콘크리트의 전단강도가 철근의 전단강도와 합하여 공칭전단강도를 계산하고 있다. 그러나 최근에 개정된 콘크리트설계기준에는 콘크리트의 비틀림강도가 공칭비틀림강도 계산에서 누락되었다. 콘크리트의 인장응력은 비록 크기가 작으나 균열후에 균열사이의 콘크리트에 존재한다. 그러나 휨과 비틀림문제에서는 균열 후 콘크리트의 인장강성은 생략되고 있다. 역학적으로 콘크리트보의 비틀림거동은 전단거동과 매우 유사하다. 그러므로 균열 후 콘크리트의 비틀림강도를 철근콘크리트 보의 공칭비틀림강도의 계산에 포함시켜야 한다. 본 논문에서는 콘크리트의 평균주인장응력이 이루는 콘크리트의 비틀림강도를 횡방향 비틀림철근의 비틀림강도와 함께 공칭비틀림강도를 구성함을 밝혔으며, 이의 타당성을 검증하기 위해 개정 전후의 ACI 의 설계기준에 의한 공칭비틀림강도와 함께 실험값과 비교하였다. 그 결과 본 논문이 제안한 모델에 의한 공칭비틀림강도가 가장 좋은 결과를 보였다.

A356합금의 품질지수에 미치는 미소기공율의 영향 (Effect of Porosity on Quality Index of Tensile Property of A356 Casting Alloys)

  • 이충도
    • 한국주조공학회지
    • /
    • 제38권5호
    • /
    • pp.95-102
    • /
    • 2018
  • The dependence of the tensile properties on variations in the porosity of A356 aluminium alloys was investigated in terms of the quality index of the tensile properties based upon the ultimate tensile strength and elongation as well as the variation of the strength coefficient and strain-hardening exponent with regard to a T6 treatment. The test specimens were prepared by low-pressure die-casting and a subsequent T6 treatment, and the experimental results of a tensile test carried out at room temperature were compared to the theoretical description using a modified constitutive model. The nominal value of the quality index of A356 alloys increases gradually with a lapse of the ageing time upon a T6 treatment, despite the fact that this value is temporarily decreased during the initial stage of ageing from a solutionised condition. Additionally, the quality index depends practically upon the porosity variation with a power law relationship without regard to whether in solutionised or artificial aged conditions. The theoretical description indicates that the strength coefficient directly determines the nominal level of the quality index. Moreover, the overall dependence of the quality index on the porosity variation is remarkably weakened with an increase in the tensile strain, whereas the quality index depends sensitively upon the porosity variation with a low value of the strain-hardening exponent.

FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석 (Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method)

  • 조백순;김성도;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.175-186
    • /
    • 2006
  • FRP 시스템으로 보강된 철근콘크리트 단면 대부분이 철근콘크리트로 구성되어 있어 휨해석 및 휨설계를 직사각응력블록을 이용한 강도설계법에 의존하는 경향이 있다. 그러나, 보강단면의 인장철근 및 FRP시스템에 의한 인장력이 부족한 단면의 FRP 시스템의 변형률이 인장파단변형률을 초과하면 강도설계법을 적용할 수 없는 해석상 모순에 빠져든다. 인장철근과 탄소섬유시트에 의한 인장력이 낮은 탄소섬유시트 보강보 실험에서 콘크리트 최대압축변형률이 0.003보다 낮은 것으로 측정되었을 뿐 아니라 최대휨모멘트는 강도설계법으로 산정된 공칭휨모멘트보다 작은 것으로 측정되어, FRP 시스템 보강단면의 공칭휨모멘트 산정에 강도설계법의 적용한계가 있는 것으로 나타났다.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Engineering properties of steel fibre reinforced geopolymer concrete

  • Ganesan, N.;Indira, P.V.;Santhakumar, Anjana
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.305-318
    • /
    • 2013
  • Engineering properties such as compressive strength, splitting tensile strength, modulus of rupture, modulus of elasticity and Poisson's ratio of geopolymer concrete (GPC) and steel fibre reinforced geopolymer concrete (SFRGPC) have been obtained from standard tests and compared. A total of 15 specimens were tested for determining each property. The grade of concrete used was M 40. The percentages of steel fibres considered include 0.25%, 0.5%, 0.75% and 1%. In general, the addition of fibres improved the mechanical properties of both GPC and SFRGPC. However the increase was found to be nominal in the case of compressive strength (8.51%), significant in the case of splitting tensile strength (61.63%), modulus of rupture (24%), modulus of elasticity (64.92%) and Poisson's ratio (50%) at 1% volume fraction of fibres. An attempt was made to obtain the relation between the various engineering properties with the percentage of fibres added.

GFRP 보강근의 이음성능 (Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar)

  • 이창호;최동욱;송기모;박영환;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Experimental study on rock-concrete joints under cyclically diametrical compression

  • Chang, Xu;Guo, Tengfei;Lu, Jianyou;Wang, Hui
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.553-564
    • /
    • 2019
  • This paper presents experimental results of rock-concrete bi-material discs under cyclically diametrical compression. It was found that both specimens under cyclical and static loading failed in three typical modes: shear crack, tensile crack and a combined mode of shear and wing crack. The failure modes transited gradually from the shear crack to the tensile one by increasing the interface angle between the interface and the loading direction. The cycle number and peak load increased by increasing the interface angle. The number of cycles and peak load increased with the interface groove depth and groove width, however, decreased with increase in interface groove spacing. The concrete strength can contribute more to the cycle number and peak load for specimens with a higher interface angle. Compared with the discs under static loading, the cyclically loaded discs had a lower peak load but a larger deformation. Finally, the effects of interface angle, interface asperity and concrete strength on the fatigue strength were also discussed.

강종에 따른 종방향 필릿용접부 공칭강도 계산식의 제안 (Proposal of Estimation Equation for Nominal Strength of Longitudinal Fillet Welds with Different Types of Steel)

  • 조재병;이혜영
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.503-510
    • /
    • 2012
  • 최근 고성능, 고강도 강재가 개발되어 강구조물에 많이 사용되고 있다. 새로 개발된 고강도 구조용 강재는 일반적인 강도의 강재에 비하여 인성, 용접성, 항복강도비 등이 다르므로 필릿용접부에 대해 기존 설계기준의 적용 타당성을 검토할 필요가 있다. 국내외의 설계기준에 따른 필릿용접부의 공칭강도 값을 비교한 결과 상당한 차이가 있음을 확인하였다. 필릿용접부 강도시험 결과를 수집 분석하였다. 필릿용접의 강도를 결정하는 주요변수로 모재의 항복강도와 인장강도, 그리고 용접금속의 인장강도를 각각 선택하여 강도 추정식을 도출하였다. 공칭강도 추정식을 사용하여 각 강종별로 구한 계산 값은, 선택한 주요변수의 종류와 관계없이 거의 동일한 것으로 나타났다. 필릿용접부의 거동특성과 설계의 실용성을 고려하여 모재의 인장강도를 기준으로 공칭강도를 산정하는 것이 좋을 것으로 판단된다. 제안된 공칭강도와 비교한 결과 기존의 설계기준에 따른 필릿용접부의 공칭강도는 낮은 강도의 강재에 대해서는 비경제적이고, 고강도 강재의 경우에는 적절한 안전성을 확보하지 못할 우려가 있다.

포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동 (An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams)

  • 이성철;최영철;오병환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF