• Title/Summary/Keyword: noisy speech recognition

Search Result 228, Processing Time 0.026 seconds

Speech Recognition Using Noise Robust Features and Spectral Subtraction (잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식)

  • Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee;Seo, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • This paper compares the recognition performances of feature vectors known to be robust to the environmental noise. And, the speech subtraction technique is combined with the noise robust feature to get more performance enhancement. The experiments using SMC(Short time Modified Coherence) analysis, root cepstral analysis, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) processing are carried out. An isolated word recognition system is composed using semi-continuous HMM. Noisy environment experiments usign two types of noises:exhibition hall, computer room are carried out at 0, 10, 20dB SNRs. The experimental result shows that SMC and root based mel cepstrum(root_mel cepstrum) show 9.86% and 12.68% recognition enhancement at 10dB in compare to the LPCC(Linear Prediction Cepstral Coefficient). And when combined with spectral subtraction, mel cepstrum and root_mel cepstrum show 16.7% and 8.4% enhanced recognition rate of 94.91% and 94.28% at 10dB.

  • PDF

Nasal Consonants Recognition Based on the Perceptual Representation (지각적 표현에 기초한 비음 인식에 관한 연구)

  • Kim, Ki-Chul;Cho, Jung-Wan
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.120-125
    • /
    • 1989
  • 음성 신호에는 언어정보이외에 여러 요인에 의한 정보가 포함되어 있어서, 문자와 일대일로 대응되는 분절을 정확하게 검출하기가 어렵다. 본 연구에서는 선형 예측계수 (LPC) 스펙트럼의 첨두 부분을 강조한 이진 (binary) 스펙트럼을 제안하고, 이를 바탕으로 음의 안정영역과 천이영역을 통합하여 음향특징을 추출하고자 한다. 각 영역의 특징은 이진 스펙트럼을 누적하여 구하며, 통합적인 특징은 각 영역의 특징을 결합한 관계적 특징으로 나타낸다. 제 2 차 포르만트 주파수의 궤적을 관계적 특징으로 하여, 양순 비음과 치조 비음을 구별한 결과, 모음의 문맥과 화자에 비교적 독립적인 인식결과를 얻을 수 있었다. 또한 이진 스펙트럼이 원래의 스펙트럼에 포함된 정보를 유지하는지 검토하기 위해, 같은 거리척도 (distance measure) 에 의해 인식 실험한 결과 이진 스펙트럼의 성능이 오히려 우수하게 나타났으며, 관계적 이진 스펙트럼의 경우 화자에 따른 변화가 더욱 적었다. 음성에 백색 잡음 (Gaussian white noise)을 더하여 잡음음성 (noisy speech) 을 만든 뒤, 같은 방법으로 실험한 결과도 유사한 인식결과를 얻을 수 있어 제안된 이진 스펙트럼의 유효성을 확인하였다.

  • PDF

Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition (이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출)

  • Shin, Min-Hwa;Park, Ji-Hun;Kim, Hong-Kook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.150-151
    • /
    • 2010
  • 본 논문에서는 잡음환경에서의 이중채널 음성인식을 위한 통계모델 기반 음성구간 검출 방법을 제안한다. 제안된 방법에서는 다채널 입력 신호로부터 얻어진 공간정보를 이용하여 음성 존재 및 부재 확률모델을 구하고 이를 통해 음성구간 검출을 행한다. 이때, 공간정보는 두 채널간의 상호 시간 차이와 상호 크기 차이로, 음성 존재 및 부재 확률은 가우시안 커널 밀도 기반의 확률모델로 표현된다. 그리고 음성구간은 각 시간 프레임 별 음성 존재 확률 대비 음성 부재 확률의 비를 추정하여 검출된다. 제안된 음성구간 검출 방법의 평가를 위해 검출된 구간만을 입력으로 하는 음성인식 성능을 측정한다. 실험결과, 제안된 공간정보를 이용하는 통계모델 기반의 음성구간 검출 방법이 주파수 에너지를 이용하는 통계모델 기반의 음성구간 검출 방법과 주파수 스펙트럼 밀도 기반 음성구간 검출 방법에 비해 각각 15.6%, 15.4%의 상대적 오인식률 개선을 보였다.

  • PDF

Robust Blind Source Separation to Noisy Environment For Speech Recognition in Car (차량용 음성인식을 위한 주변잡음에 강건한 브라인드 음원분리)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.89-95
    • /
    • 2006
  • The performance of blind source separation(BSS) using independent component analysis (ICA) declines significantly in a reverberant environment. A post-processing method proposed in this paper was designed to remove the residual component precisely. The proposed method used modified NLMS(normalized least mean square) filter in frequency domain, to estimate cross-talk path that causes residual cross-talk components. Residual cross-talk components in one channel is correspond to direct components in another channel. Therefore, we can estimate cross-talk path using another channel input signals from adaptive filter. Step size is normalized by input signal power in conventional NLMS filter, but it is normalized by sum of input signal power and error signal power in modified NLMS filter. By using this method, we can prevent misadjustment of filter weights. The estimated residual cross-talk components are subtracted by non-stationary spectral subtraction. The computer simulation results using speech signals show that the proposed method improves the noise reduction ratio(NRR) by approximately 3dB on conventional FDICA.

  • PDF

Noise Reduction Algorithm using Average Estimator Least Mean Square Filter of Frame Basis (프레임 단위의 AELMS를 이용한 잡음 제거 알고리즘)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.135-140
    • /
    • 2013
  • Noise estimation and detection algorithm to adapt quickly to changing noise environment using the LMS Filter. However, the LMS Filter for noise estimation for a certain period of time and need time to adapt. If the signal changes occur, have the disadvantage of being more adaptive time-consuming. Therefore, noise removal method is proposed to a frame basis AELMS Filter to compensate. In this paper, we split the input signal on a frame basis in noisy environments. Remove the LMS Filter by configuring noise predictions using the mean and variance. Noise, even if the environment changes fast adaptation time to remove the noise. Remove noise and environmental noise and speech input signal is mixed to maintain the unique characteristics of the voice is a way to reduce the damage of voice information. Noise removal method using a frame basis AELMS Filter To evaluate the performance of the noise removal. Experimental results, the attenuation obtained by removing the noise of the changing environment was improved by an average of 6.8dB.

A Study on Out-of-Vocabulary Rejection Algorithms using Variable Confidence Thresholds (가변 신뢰도 문턱치를 사용한 미등록어 거절 알고리즘에 대한 연구)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1471-1479
    • /
    • 2008
  • In this paper, we propose a technique to improve Out-Of-Vocabulary(OOV) rejection algorithms in variable vocabulary recognition system which is much used in ASR(Automatic Speech Recognition). The rejection system can be classified into two categories by their implementation method, keyword spotting method and utterance verification method. The utterance verification method uses the likelihood ratio of each phoneme Viterbi score relative to anti-phoneme score for deciding OOV. In this paper, we add speaker verification system before utterance verification and calculate an speaker verification probability. The obtained speaker verification probability is applied for determining the proposed variable-confidence threshold. Using the proposed method, we achieve the significant performance improvement; CA(Correctly Accepted for keyword) 94.23%, CR(Correctly Rejected for out-of-vocabulary) 95.11% in office environment, and CA 91.14%, CR 92.74% in noisy environment.

  • PDF

An Analysis on Phone-Like Units for Korean Continuous Speech Recognition in Noisy Environments (잡음환경하의 연속 음성인식을 위한 유사음소단위 분석)

  • Shen Guang-Hu;Lim Soo-Ho;Seo Jun-Bae;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.123-126
    • /
    • 2004
  • 본 논문은 잡음환경 하에서의 효율적인 문맥의존 음향 모델 구성에 대한 기초연구로서 잡음환경 하에서의 유사 음소단위 수에 따른 연속 음성인식 성능을 비교, 평가한 결과에 대한 보고이다. 기존의 연구[1,2]로부터 연속음성 인식의 경우 문맥종속모델은 변이음을 고려한 39유사음소를 이용한 경우가 48유사음소를 이용하는 것보다 더 좋은 인식성능을 나타냄을 알 수 있었다. 이 연구 결과를 바탕으로 본 연구에서는 잡음환경에서도 효율적인 문맥 의존 음향모델을 구성하기 위한 기초 연구를 수행하였다. 다양한 잡음환경을 고려하기 위해 White, Pink, LAB 잡음을 신호 대 잡음비(Signal to Noise Ratio) 5dB, 10dB, 15dB 레벨로 음성에 부가한 후 각 유사음소단위 수에 따른 연속음성인식 실험을 수행하였다. 그 결과, 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 clear 환경인 경우에 약 $7\%$$17\%$ 향상된 단어인식률과 문장 인식률을 얻을 수 있었으며, 각 잡음환경에서도 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 평균 적으로 $17\%$$28\%$ 향상된 단어인식률과 문장인식률을 얻을 수 있어 39유사음소 단위가 한국어 연속음성인식에 더 적합하고 잡음환경에서도 유효함을 확인할 수 있었다.

  • PDF

A study on the clinical usefulness and improvement of hearing in noise test in evaluating central auditory processing (중추 청각 처리 기능 평가에서 hearing in noise test의 임상적 유용성과 개선점 고찰)

  • Han, Soo-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.108-113
    • /
    • 2022
  • Speech recognition in noise situation is an important skill for effective communication. Hearing In Noise Test (HINT) has been suggested as a clinical tool to evaluate these aspects. However, this tool has not been used widely in domestic clinics. In this study, psychophysical aspects of HINT and burdens in clinical application were analyzed to improve the applicability of the tool. The difficulty in understanding speech in the elderly population is due to hearing loss based on aging of peripheral and central auditory pathways. As typical clinical cases, HINT scores for young and elderly listeners (20s vs 70s) were compared. Four conditions of HINT test were Quiet (Q), Noise Front (NF), Noise Right (NR), and Noise Left (NL). Quantitative scores showed that the elderly listener required more Signal to Noris Ratio (SNR) values than the younger counterpart in noisy situations. Although both showed Binaural Masking Level Difference (BMLD) effect, the strength was smaller in the elder. However, the age-matched normalized data were not established in detail for clinical application. Confirmed usefulness of HINT and the related improvement in clinical measuring procedure were suggested.