• Title/Summary/Keyword: noisy speech recognition

Search Result 228, Processing Time 0.026 seconds

Cepstral Normalization Combined with CSFN for Noisy Speech Recognition (켑스트럼 정규화와 켑스트럼 거리기반 묵음특징정규화 방법을 이용한 잡음음성 인식)

  • Choi, Sook-Nam;Shen, Guang-Hu;Chung, Hyun-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1221-1228
    • /
    • 2011
  • The speech recognition system works well in general indoor environment. However, the recognition performance is dramatically decreased when the system is used in the real environment because of the several noises. In this paper we proposed CSFN-CMVN to improve the recognition performance of the existing CSFN(Cepstral distance based SFN). The CSFN-CMVN method is a combined method of cepstral normalization with CSFN that normalizes silence features using cepstral euclidean distance to classify speech/silence for better performance. From the test results using Aurora 2.0 DB, we could find out that our proposed CSFN-CMVN improves about 7% of more average word accuracy in all the test sets comparing with the typical silence features normalization SFN-I. We can also get improved accuracy of 6% and 5% respectively in compared tests with the conventional SFN-II and CSFN, showing the effectiveness of our proposed method.

Normalization of Spectral Magnitude and Cepstral Transformation for Compensation of Lombard Effect (롬바드 효과의 보정을 위한 스펙트럼 크기의 정규화와 켑스트럼 변환)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.83-92
    • /
    • 1996
  • This paper describes Lombard effect compensation and noise suppression so as to reduce speech recognition error in noisy environments. Lombard effect is represented by the variation of spectral envelope of energy normalized word and the variation of overall vocal intensity. The variation of spectral envelope can be compensated by linear transformation in cepstral domain. The variation of vocal intensity is canceled by spectral magnitude normalization. Spectral subtraction is use to suppress noise contamination, and band-pass filtering is used to emphasize dynamic features. To understand Lombard effect and verify the effectiveness of the proposed method, speech data are collected in simulated noisy environments. Recognition experiments were conducted with contamination by noise from automobile cabins, an exhibition hall, telephone booths in down town, crowded streets, and computer rooms. From the experiments, the effectiveness of the proposed method has been confirmed.

  • PDF

Improvement of Lipreading Performance Using Gabor Filter for Ship Environment (선박 환경에서 Gabor 여파기를 적용한 입술 읽기 성능향상)

  • Shin, Do-Sung;Lee, Seong-Ro;Kwon, Jang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.598-603
    • /
    • 2010
  • In this paper, we work for Lipreading using visual information for ship environment. Lipreading is studied for using image information including lips of a speaker at the existing speech recognition system. This technique is a compensation method to increase recognition rate decreasing remarkably in noisy circumstances. Proposed way improved the rate of recognition improving methode of preprocessing using the Gabor Filter for Ship Environment. The experiment were carried out under changing of light with time in the ship environment with lip image. For Comparing with recognition, make a compare with between method of lip region of interest (ROI) before Gabor filtering and after Gabor filtering. In the case of using method of lip ROI before Gabor filtering, the result of the experiments applying to the proposed ways recognition resulting in 44% of recognition.

Noisy Environmental Adaptation for Word Recognition System Using Maximum a Posteriori Estimation (최대사후확률 추정법을 이용한 단어인식기의 잡음환경적응화)

  • Lee, Jung-Hoon;Lee, Shi-Wook;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.107-113
    • /
    • 1997
  • To achive a robust Korean word recognition system for both channel distortion and additive noise, maximum a posteriori estimation(MAP) adaptation is proposed and the effectiveness of environmental adaptation for improving recognition performance is investigated in this paper. To do this, recognition experiments using MAP adaptation are carried out for the three different speech ; 1) channel distortion is introduced, 2) environmental noise is added, 3) both channel distortion and additive noise are presented. Theeffectiveness of additive feature parameters, such as regressive coefficients and durations, for environmental adaptation are also investigated. From the speaker independent 100 words recognition tests, we had 9.0% of recognition improvement for the case 1), more than 75% for the case 2), and 11%~61.4% for the case 3) respectively, resulting that a MAP environmental adaptation is effective for both channel distorted and noise added speech recognition. But it turned out that duration information used as additive feature parameter did not played an important role in the tests.

  • PDF

Virtual Dialog System Based on Multimedia Signal Processing for Smart Home Environments (멀티미디어 신호처리에 기초한 스마트홈 가상대화 시스템)

  • Kim, Sung-Ill;Oh, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2005
  • This paper focuses on the use of the virtual dialog system whose aim is to build more convenient living environments. In order to realize this, the main emphasis of the paper lies on the description of the multimedia signal processing on the basis of the technologies such as speech recognition, speech synthesis, video, or sensor signal processing. For essential modules of the dialog system, we incorporated the real-time speech recognizer based on HM-Net(Hidden Markov Network) as well as speech synthesis into the overall system. In addition, we adopted the real-time motion detector based on the changes of brightness in pixels, as well as the touch sensor that was used to start system. In experimental evaluation, the results showed that the proposed system was relatively easy to use for controlling electric appliances while sitting in a sofa, even though the performance of the system was not better than the simulation results owing to the noisy environments.

Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition (강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출)

  • Shin, Ui-Hyeop;Park, Hyung-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.326-334
    • /
    • 2022
  • In this paper, we propose speech enhancement algorithm as a pre-processing for robust speech recognition in noisy environments. Auxiliary-function-based Independent Vector Analysis (AuxIVA) is performed with weighted covariance matrix using time-varying variances with scaling factor from target masks representing time-frequency contributions of target speech. The mask estimates can be obtained using Neural Network (NN) pre-trained for speech extraction or diffuseness using Coherence-to-Diffuse power Ratio (CDR) to find the direct sounds component of a target speech. In addition, outputs for omni-directional noise are closely chained by sharing the time-varying variances similarly to independent subspace analysis or IVA. The speech extraction method based on AuxIVA is also performed in Independent Low-Rank Matrix Analysis (ILRMA) framework by extending the Non-negative Matrix Factorization (NMF) for noise outputs to Non-negative Tensor Factorization (NTF) to maintain the inter-channel dependency in noise output channels. Experimental results on the CHiME-4 datasets demonstrate the effectiveness of the presented algorithms.

A Phase-related Feature Extraction Method for Robust Speaker Verification (열악한 환경에 강인한 화자인증을 위한 위상 기반 특징 추출 기법)

  • Kwon, Chul-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.613-620
    • /
    • 2010
  • Additive noise and channel distortion strongly degrade the performance of speaker verification systems, as it introduces distortion of the features of speech. This distortion causes a mismatch between the training and recognition conditions such that acoustic models trained with clean speech do not model noisy and channel distorted speech accurately. This paper presents a phase-related feature extraction method in order to improve the robustness of the speaker verification systems. The instantaneous frequency is computed from the phase of speech signals and features from the histogram of the instantaneous frequency are obtained. Experimental results show that the proposed technique offers significant improvements over the standard techniques in both clean and adverse testing environments.

A Study on Lip-reading Enhancement Using Time-domain Filter (시간영역 필터를 이용한 립리딩 성능향상에 관한 연구)

  • 신도성;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.375-382
    • /
    • 2003
  • Lip-reading technique based on bimodal is to enhance speech recognition rate in noisy environment. It is most important to detect the correct lip-image. But it is hard to estimate stable performance in dynamic environment, because of many factors to deteriorate Lip-reading's performance. There are illumination change, speaker's pronunciation habit, versatility of lips shape and rotation or size change of lips etc. In this paper, we propose the IIR filtering in time-domain for the stable performance. It is very proper to remove the noise of speech, to enhance performance of recognition by digital filtering in time domain. While the lip-reading technique in whole lip image makes data massive, the Principal Component Analysis of pre-process allows to reduce the data quantify by detection of feature without loss of image information. For the observation performance of speech recognition using only image information, we made an experiment on recognition after choosing 22 words in available car service. We used Hidden Markov Model by speech recognition algorithm to compare this words' recognition performance. As a result, while the recognition rate of lip-reading using PCA is 64%, Time-domain filter applied to lip-reading enhances recognition rate of 72.4%.

Design of an Efficient VLSI Architecture and Verification using FPGA-implementation for HMM(Hidden Markov Model)-based Robust and Real-time Lip Reading (HMM(Hidden Markov Model) 기반의 견고한 실시간 립리딩을 위한 효율적인 VLSI 구조 설계 및 FPGA 구현을 이용한 검증)

  • Lee Chi-Geun;Kim Myung-Hun;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.159-167
    • /
    • 2006
  • Lipreading has been suggested as one of the methods to improve the performance of speech recognition in noisy environment. However, existing methods are developed and implemented only in software. This paper suggests a hardware design for real-time lipreading. For real-time processing and feasible implementation, we decompose the lipreading system into three parts; image acquisition module, feature vector extraction module, and recognition module. Image acquisition module capture input image by using CMOS image sensor. The feature vector extraction module extracts feature vector from the input image by using parallel block matching algorithm. The parallel block matching algorithm is coded and simulated for FPGA circuit. Recognition module uses HMM based recognition algorithm. The recognition algorithm is coded and simulated by using DSP chip. The simulation results show that a real-time lipreading system can be implemented in hardware.

  • PDF

Development of a Reading Training Software offering Visual-Auditory Cue for Patients with Motor Speech Disorder (말운동장애인을 위한 시-청각 단서 제공 읽기 훈련 프로그램 개발)

  • Bang, D.H.;Jeon, Y.Y.;Yang, D.G.;Kil, S.K.;Kwon, M.S.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.307-315
    • /
    • 2008
  • In this paper, we developed a visual-auditory cue software for reading training of motor speech disorder patients. Motor speech disorder patients can use the visual and/or auditory cues for reading training and improving their symptom. The software provides some sentences with visual-auditory cues. Our sentences used for reading training are adequately comprised on modulation training according to a professional advice in speech therapy field. To ameliorate reading skills we developed two algorithms, first one is automatically searching the starting time of speech spoken by patients and the other one is removing auditory-cue from the recorded speech that recorded at the same time. The searching of speech starting time was experimented by 10 sentences per 6 subjects in four kinds of noisy environments thus the results is that $7.042{\pm}8.99[ms]$ error was detected. The experiment of the cancellation algorithm of auditory-cue was executed from 6 subjects with 1 syllable speech. The result takes improved the speech recognition rate $25{\pm}9.547[%]$ between before and after cancellation of auditory-cue in speech. User satisfaction index of the developed program was estimated as good.