• Title/Summary/Keyword: noise-power spectrum

Search Result 449, Processing Time 0.037 seconds

Performance Analysis of an Energy Detection Based Cooperative Spectrum Sensing with Double Thresholds in the Presence of Noise Uncertainty (잡음 전력의 불확실성이 존재하는 환경에서 이중 임계값을 사용하는 에너지 검파 기반 협력 스펙트럼 감지의 성능 분석)

  • Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • An energy detection based spectrum sensing is widely known to be susceptible to the noise power uncertainty. As one of the methods to resolve this problem, a cooperative spectrum sensing based on an energy detector with double thresholds has been published recently. However, its performance analysis under a fading channel has not been carried out yet. In this paper, we present a closed form of performance analysis of the scheme by extending our previous work on evaluating the performance of an energy detector in the presence of noise power uncertainty.

Analysis of Noise Power Spectrum According to Flat-Field Correction in Digital Radiography (디지털 의료영상에서 Flat-Field 보정에 따른 Noise Power Spectrum 분석)

  • Lee, Meena;Kwon, Soonmu;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • The pixels used in a digital X-ray detector have different sensitivities and offset values. A non-uniform image is consequently obtained. Flat-field correction was introduced to resolve this problem and carried out image preprocessing in a digital imaging system. Nevertheless, the non-uniform images caused by several reasons have been being occasionally acquired. In this study, the non-uniform images acquired in digital imaging systems were applied to flat-field correction, and NPSs were calculated and analyzed with those images before and after correction. It was confirmed that low frequency noise were effectively eliminated.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Comparison of Image Quality of the Amorphous Silicon DR System and the Film-screen Systems (비정질 실리콘 디지털 방사선 촬영기와 X-ray film과의 영상질 비교 평가)

  • Youn, Je-Woong;Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shin, Kyung-Sub;Mun, In-K.;Kim, Hong-Kwon;Han, Yong-Woo;Nam, Seung-Bae
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.161-170
    • /
    • 1999
  • System performances in terms of image quality between an amorphous silicon DR system and a conventional film-screen system were evaluated. Various aspects of image quality MTF (modulation transfer function), NPS (noise power spectrum), SNR(signal-to-noise ratio) and contrast were measured and calculated. The MTF of the DR system was comparable to the film-screen systems. The noise was mainly dominated by the quantum mottle in both systems and the electronic noise was found in the DR system. The contrast of the DR system was better than the film-screen systems by virtue of high sensitivity and image processing. Compared to the film-screen systems in general radiography, the DR system had similar resolution and showed better contrast with the same exposure condition after contrast manipulation. The results of this study provide some useful information about the performance of the DR system in connection with medical applications.

  • PDF

Development of Advanced Data Analysis Method Using Harmonic Wavelet Transform for Surface Wave Method (하모닉 웨이브릿 변환을 이용한 표면파 시험을 위한 향상된 데이터 해석기법의 개발)

  • Park, Hyung-Choon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through multilayered systems such as a soil site is an important parameter and carries valuable information in non-destructive site characterization tests. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum determined using the cross power spectrum is easily distorted by background noise which always exists in the field. This causes distortion of measured signal and difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed and the phase spectrum by the proposed method is applied to the determination of dispersion curve. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums and dispersion curves determined by the proposed method were found to be in good agreement with the actual phase spectrums and dispersion curves biased by heavy background noise. The comparison manifests the proposed method to be a very useful tool to overcome noise effects.

Subband Based Spectrum Subtraction Algorithm (서브밴드에 기반한 스펙트럼 차감 알고리즘)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.555-560
    • /
    • 2013
  • This paper first proposes a classification algorithm which detects a voiced, unvoiced, and silence signal using distance measure, logarithm power and root mean square methods at each frame, then a spectrum subtraction algorithm based on a subband filter. The proposed algorithm subtracts spectrums of white noise and street noise from noisy signal based on the subband filter at each frame. In this experiment, experimental results of the proposed spectrum subtraction algorithm demonstrate using the speech and noise data of Aurora-2 database. Based on measuring the speech-to-noise ratio (SNR), experiments confirm that the proposed algorithm is effective for the speech by contaminated the noise. From the experiments, the improvement in the output SNR values was approximately 2.1 dB and 1.91 dB better for white noise and street noise, respectively.

Evaluation of Comparison of Noise Power Spectrum according to the Time of Using Electronic Portal Imaging Device (EPID) for LINAC System (선형가속기의 시간에 따르는 전자조사문영상기구의 잡음전력스펙트럼 비교 평가)

  • Jung-Whan Min;Hoi-Woun Jeong
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.117-123
    • /
    • 2024
  • This study was to assessment of quality assurance (QA) and noise characteristics of Noise Power Spectrum (NPS) according to the time of by using electronic portal imaging device (EPID) for LINAC (Linear Accelerator). LINAC device was (Varian ClinacR iX LINAC, USA) used and the were 40 × 30 cm2 of detector size were 1024 × 768 photo-electric diode array size. Signal could be obtained the K-space image of white noise images for NPS and we used to Overlap, Non-Overlap, Out of Penumbra, Flatness, Symmetry, Symmetry Rt, Lt methods. The 2013s NPS image Out of Penumbra quantitatively value more than 2013s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. Thus, the 2022s NPS image Out of Penumbra quantitatively value more than 2022s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. The assessment of comparison of white noise for NPS image noise and intensity of this study were to that should be used efficiently of the LINAC EPID detector system for Overlap method for International Electro-technical Commission (IEC).

Conducted Noise Reduction in Random Pulse Width Modulation (Random PWM 기법에 의한 전도노이즈)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.98-101
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%${\sim}$30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with USN. which are connected to the spectrum analyzer respectively.

  • PDF

Acoustic Power Estimation of Highway Traffic Noise (고속도로 교통소음의 음향파워 평가)

  • 오정한;조대승;장태순;강희만;이용은;박형식;권성용;이성환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1273-1279
    • /
    • 2001
  • Precise highway traffic noise simulation and reduction require the accurate data for sound power levels emitted by vehicles, varied to road surface, traffic speed, vehicle types and makers, different from countries to countries. In this study, we have elaboratively measured domestic highway traffic noise and parameters affecting noise levels at the nearside carriageway edge. From numerical simulation using the measured results for highway traffic noise, we propose not only two correction factors to enhance the accuracy of highway traffic sound power estimation using ASJ Model-1998 but also its typical power spectrum according to road surface type. The measured and predicted highway traffic noise levels using the proposed sound power shows little difference within 1 dB.

  • PDF