• Title/Summary/Keyword: noise damage

Search Result 688, Processing Time 0.032 seconds

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

THE ASSESSMENT OF NOISE IN THE PEDIATRIC DENTAL CLINICS (소아치과 진료실에서 발생하는 소음 평가)

  • Kwon, Bo-Min;Lee, Ji-Hyun;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • Dental professionals are exposed to various occupational risks, among which the problem of hearing damage has been newly revealed. There have been some researches reporting that noise occurring in a dental office exceeds the Occupational Safety and Health Act (OSHA) Standards. Especially, the pediatric dentists are repeatedly exposed to an additional noise source called the crying sound of children in addition to all kinds of noises from dental instruments. Accordingly, this study intended to investigate the noise environment likely to affect pediatric dentists and to examine the possibility of resultant hearing damages. The level of noise was measured respectively, when various dental instruments (ultrasonic scaler, high-speed handpiece, low-speed handpiece) are operated, when children are crying, and when both occasions take place simultaneously (from the distance of 30 cm) with a portable noise meter. And the daily duration of pediatric dentists exposed to the noise environment was surveyed. The results were compared with the standard value of noise threshold of NIOSH, OSHA, and that of hearing damage of CRA News letter respectively. Considering the intensity and exposure time, the noise environment of pediatric dentists exceeds the allowable noise threshold values. Even only one exposure to crying child was likely to lead to permanent hearing damage. Comparatively, pediatric dentists have a higher risk for occupational hearing damages, and some active measures are thought highly desirable to minimize it.

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

Study on Health Impact Assessment Plan of Traffic Noise (교통소음의 건강영향 평가방안에 관한 연구)

  • Sun, Hyo-Sung;Park, Young-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.774-776
    • /
    • 2007
  • Because many people suffer physical and mental damage from the noise of the traffic facilities including road, rail, airport, the advanced countries have conducted the researches of predicting and solving the impact of the human health exposed to traffic noise. Therefore, this study suggests the fundamental plans which can assess the health impact of traffic noise on the basis of the prediction results about the health impact of traffic noise.

  • PDF

A Study on the Damage Identification of Large Structure Using Modal Testing (모달시험을 이용한 대형 구조물의 손상위치 파악)

  • Jung, Sung-Jin;Choi, Su-Hyun;Jin, Bong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.77-80
    • /
    • 2005
  • This paper presents a theoretical and experimental study on the damage identification of structures. In civil and aerospace, significant work has been done in the area of detecting damage in structures by using changes in the dynamic response of the structure. In this paper a method based on the changes in the strain energy of the structure will be discussed. To evaluate the effectiveness of the method it will be applied to both beam and LNG(liquefied natural gas) carrier.

  • PDF

Gabor Pulse-Based Matching Pursuit Algorithm : Applications in Waveguide Damage Detection (가보 펄스 기반 정합추적 알고리즘 : 웨이브가이드 결함진단에서의 응용)

  • 선경호;홍진철;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.969-974
    • /
    • 2004
  • Although guided-waves are very efficient for long-range nondestructive damage inspection, it is not easy to extract meaningful pulses of small magnitude out of noisy signals. The ultimate goal of this research is to develop an efficient signal processing technique for the current guided-wave technology. The specific contribution of this investigation towards achieving this goal, a two-stage Gabor pulse-based matching pursuit algorithm is proposed : rough approximations with a set for predetermined parameters characterizing the Gabor pulse and fine adjustments of the parameters by optimization. The parameters estimated from the measured signal are then used to assess not only the location but also the size of a crack existing in a rod. To validate the effectiveness of the proposed method, the longitudinal wave-based damage detection in rods is considered. To estimate the crack size, Love's theory for the dispersion of longitudinal waves is employed.

  • PDF

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

Analysis of Fatigue Damage of the parts around the vehicle engine with Respect to Road surface conditions (도로 노면 조건을 고려한 차량 엔진 주변 부품의 피로손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung;Lee, Bong-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.581-586
    • /
    • 2014
  • In general vibration test considers both harmonic vibration and random vibration, When developing the vehicle component. But the effect of harmonic vibration is larger in the parts around the vehicle engine, sole testing the harmonic vibration is considered. In this study, the fatigue damage of the linear system fixed around the engine is analyzed when the effect of random vibration is higher, harsher than the normal road surface condition. In condition the vehicle speed and the engine RPM are similar, the higher the harshness of the road surface condition is, the larger the fatigue damage level is. Therefore both random vibration and harmonic vibration must be considered in vibration test of components around the engine. Proposing the sine on random(SOR) vibration test that can exam considering both of vibrations, harmonic and random.

  • PDF

Robust Damage Diagnostic Method Using Short Time Fourier Transform and Beating (단시간 푸리에 변환과 맥놀이를 이용한 강건한 결함 진단법)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1108-1117
    • /
    • 2005
  • A robust damage detection method using short-time Fourier transform and beating phenomena is presented as an estimating tool of the healthiness of large structures. The present technique makes use of beating phenomena that manifest themselves when two signals of similar frequencies are added or subtracted. Unlike most existing methods based on vibration signals, the present approach does not require an analytic model for target structures. Furthermore, the main advantage of the proposed method compared to the competing diagnostic method using vibration data is its robustness. The proposed method is not affected by the amplitude of exciting signals and the location of exciting points. From a measuring view point. the location of sensing point have no influence on the performance of the present method. With a view to verifying the effectiveness of this method. a series of experiments are made and the results show its possibility as a robust damage diagnostic method.