• Title/Summary/Keyword: noise characterization

Search Result 159, Processing Time 0.029 seconds

Clock Scheduling and Cell Library Information Utilization for Power Supply Noise Reduction

  • Kim, Yoo-Seong;Han, Sang-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Power supply noise is fundamentally caused by large current peaks. Since large current peaks are induced by simultaneous switching of many circuit elements, power supply noise can be minimized by deliberate clock scheduling which utilizes nonzero clock skew. In this paper, nonzero skew clock scheduling is used to avoid the large peak current and consequently reduce power supply noise. While previous approaches require extra characterization efforts to acquire current waveform of a circuit, we approximate it only with existing cell library information to be easily adapted to conventional design flow. A simulated annealing based algorithm is performed, and the peak current values are estimated for feasible clock schedules found by the algorithm. The clock schedule with the minimum peak current is selected for a solution. Experimental results on ISCAS89 benchmark circuits show that the proposed method can effectively reduce the peak current.

Acoustic Noise Source Identification in the Automotive Industry (자동차의 음향잡음의 원인규명 방안)

  • Hall, Paul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.91-97
    • /
    • 1996
  • We have all heard sounds that did not sound "right" while riding in an automobile. Objectionable sounds are difficult to find and understand because the sound field is complex and dynamic in the near field of an automobile. Many different noise sources and transmission paths must be understood before an engineering change can be recommended. This paper reviews the fundamental characterization of sound and chscusses the Sound Intensity measurement technique. Sound intensity measurements locate sources and sinks of acoustic energy. Used with narrowband analysis equipment, acoustic noise sources can be identified. Sound intensity measurements are made -in-situ and do not require specmi anechoic facilities. The measurement results in a vector representation of the near field sound field and can discriminate between multiple sound sources.d sources.

  • PDF

Characterization of Noise Exposure in the Tank Gun Drill Ranges (군대 전차포 훈련장에서의 소음노출 특성)

  • Hwang, Sung Ho;Park, Jae Bum
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.74-78
    • /
    • 2014
  • Objectives: Purpose of this study was to evaluate the noise level exposures at the different cannonball type and locations in the tank gun drill ranges. Methods: We visited the tank gun drill ranges and measured with a sound level meter(3M Quest SoundPro$^{TM}$) with the value of Peak(dB(A)). Results: The highest peak value of impulse noise level averaged 166.3 dB(A) at the site of loading solider. The highest peak value of impulse noise level by size of cannonball averaged 165.9 dB(A) at the 120 mm size cannonball of the tank. This result was significantly different from the other size of cannonballs such as 7.62 mm, 90 mm, and 105 mm(p < 0.001). Among the four types of soldier site on the tank, average noise levels of loading soldier, 156.6 dB(A), were higher than the other three types of soldier site (p > 0.05). Conclusions: This study confirmed that there were needed for a proper control to reduce the amount of impulse noise exposure at the tank gun drill ranges.

Characterization of Buffeting Noise Through a Rear Window in an Automobile Using LBM (격자 볼츠만법을 이용한 자동차 뒷 창문 버페팅 소음 특성해석)

  • Lee, Songjune;Choi, Hyunggyu;Cho, Munhwan;Ih, Kang-duck;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.692-699
    • /
    • 2015
  • Buffeting noise through a rear window in an automobile is investigated by using lattice Boltzmann method. The generation mechanism of the buffeting noise can be understood as the resonance mechanism in a Helmholtz resonator, which is driven by the convecting vortex in a shear-layer flow over the neck of the resonator. Two methods to suppress the buffeting noise are proposed, and their effects are quantitatively assessed. Opening front window reduces the observed buffeting tonal noise by 25 dB and the overall SPL by 4 dB, and the installation of a Helmholtz resonator acting as a dynamic damper reduces the tonal component that by 35 dB and the overall SPL by 10 dB.

Directional Harmonic Wavelet Analysis (방향성 조화 웨이블렛 해석 기법)

  • 한윤식;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.267-272
    • /
    • 1998
  • A new signal processing technique, the directional harmonic wavelet map(dHWM), is presented to characterize the instantaneous planar motion of a measurement point in a structure from its transient complex-valued vibration signal. It is proven that the auto-dHWM essentially tracks the shape and directivity of the instantaneous planar motion, whereas the phase of the cross-dHWM indicates its inclination angle. Finally, the technique is successfully applied to an automobile engine for characterization of its transient motion during crank-on/idline/engine-off.

  • PDF

Indirect Measurement of Dynamic Characteristic and Structureborne Sound Source Level for Installed Machine (탑재장비 동적특성 및 고체음 세기의 간접 측정)

  • 김상현;정의봉
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.727-733
    • /
    • 1996
  • Machines installed in various structures emit airborne sound and structureborne sound and are major source of noise and vibration. Especially when machines are installed upon a flexible foundation, most of noise and vibration are due to transmission of structureborne sound. Therefore, characterization and measurement of structureborne sound source level are necessary for controlling noise and vibration. But structureborne sound from vibrating machine is strongly coupled to the supportingstructure. This paper proposes the method of estimating the supporting sturcture's dynamic character- istic and structureborne sound source level for machine installed system without separating the machine, resilient mount and foundation.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

Dynamic Characterization of Noise and Vibration Transmission Paths in Linear Cyclic Systems (II)- Experimental Validation-Experimental Validation-

  • Kim, Han-Jun;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1061-1071
    • /
    • 2000
  • Linear cyclic systems (LCS's) are a class of systems whose dynamic behavior changes periodically. Such a cyclic behavior is ubiquitous in systems with fundamentally repetitive motion. Yet, the knowledge of the noise and vibration transmission paths in LCS's is quite limited due to the time-varying nature of their dynamics. The first part of this two-part paper derives a generic expression that describes how the noise and/or vibration are transmitted between two (or multiple) points in the LCS's. In Part II, experimental validation of the theoretical development of Part I is provided. The noise and vibration transmission paths of the scroll and rotary compressors (two typical LCS's) are examined to show that the LCS's indeed generate a series of amplitude modulated input signals at the output, where the carrier frequencies are harmonic multiples of the LCS' fundamental frequency. The criterion proposed in Part I to determine how well a given LCS can be approximated as a linear time-invariant systems (LTIS) is applied to the noise and vibration transmission paths of the two compressors. Furthermore, the implications of the experimental validations/applications are discussed in order to assess the applicability of the noise/vibration source and transmission path identification techniques based on the assumption that the system under consideration is linear and time-invariant.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis- (반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF