• 제목/요약/키워드: node state

검색결과 507건 처리시간 0.031초

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

TinyOS 기반의 센서 노드 제어 알고리즘 (Sensor Node Control Algorithm Based on TinyOS)

  • 부준필;양현규;김도현
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.1-8
    • /
    • 2008
  • 최근에 대표적인 센서 노드 운영체계인 TinyOS를 이용하여 센서 네트워크를 개발하여 다양한 유비쿼터스 응용 서비스를 개발하고 있다. 이들 TinyOS 기반의 센서 네트워크에서는 상황 정보를 획득하기 위해 센서로부터 센싱된 정보의 전달과 수집을 집중적으로 수행한다. 이에 본 논문에서는 센서 노드의 전력 상태를 파악하여 이를 토대로 센서 노드를 수면, 활동, power off 모드로 전환하는 센서 노드 제어 알고리즘을 제시한다. 그리고 이 알고리즘을 토대로 센서 네트워크의 센서 노드, 싱크, 서버에서 센서 제어 모듈을 설계하고 구현한다. 이를 위하여 센서 노드의 센서 전력제어 모듈과, USN 서버의 센싱 데이터 수신 및 도시 모듈과 센서 제어 모듈을 설계하고 TinyOS와 자바 언어를 이용하여 구현한다. 이를 통하여 센서 노드의 전력 상태를 확인하여 데이터 수집이 어려울 경우 수면이나 power off 모드로 전환하여 전력 손실을 방지하고, 주변 환경이 정상적일 경우 활동 모드로 변경함으로써 효과적으로 센서 노드의 전력을 제어할 수 있을 것으로 사료된다.

  • PDF

A City-Level Boundary Nodes Identification Algorithm Based on Bidirectional Approaching

  • Tao, Zhiyuan;Liu, Fenlin;Liu, Yan;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2764-2782
    • /
    • 2021
  • Existing city-level boundary nodes identification methods need to locate all IP addresses on the path to differentiate which IP is the boundary node. However, these methods are susceptible to time-delay, the accuracy of location information and other factors, and the resource consumption of locating all IPes is tremendous. To improve the recognition rate and reduce the locating cost, this paper proposes an algorithm for city-level boundary node identification based on bidirectional approaching. Different from the existing methods based on time-delay information and location results, the proposed algorithm uses topological analysis to construct a set of candidate boundary nodes and then identifies the boundary nodes. The proposed algorithm can identify the boundary of the target city network without high-precision location information and dramatically reduces resource consumption compared with the traditional algorithm. Meanwhile, it can label some errors in the existing IP address database. Based on 45,182,326 measurement results from Zhengzhou, Chengdu and Hangzhou in China and New York, Los Angeles and Dallas in the United States, the experimental results show that: The algorithm can accurately identify the city boundary nodes using only 20.33% location resources, and more than 80.29% of the boundary nodes can be mined with a precision of more than 70.73%.

Enhanced OLSR for Defense against DOS Attack in Ad Hoc Networks

  • Marimuthu, Mohanapriya;Krishnamurthi, Ilango
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.31-37
    • /
    • 2013
  • Mobile ad hoc networks (MANET) refers to a network designed for special applications for which it is difficult to use a backbone network. In MANETs, applications are mostly involved with sensitive and secret information. Since MANET assumes a trusted environment for routing, security is a major issue. In this paper we analyze the vulnerabilities of a pro-active routing protocol called optimized link state routing (OLSR) against a specific type of denial-of-service (DOS) attack called node isolation attack. Analyzing the attack, we propose a mechanism called enhanced OLSR (EOLSR) protocol which is a trust based technique to secure the OLSR nodes against the attack. Our technique is capable of finding whether a node is advertising correct topology information or not by verifying its Hello packets, thus detecting node isolation attacks. The experiment results show that our protocol is able to achieve routing security with 45% increase in packet delivery ratio and 44% reduction in packet loss rate when compared to standard OLSR under node isolation attack. Our technique is light weight because it doesn't involve high computational complexity for securing the network.

Trust-based Relay Selection in Relay-based Networks

  • Wu, Di;Zhu, Gang;Zhu, Li;Ai, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2587-2600
    • /
    • 2012
  • It has been demonstrated that choosing an appropriate relay node can improve the transmission rate for the system. However, such system improvement brought by the relay selection may be degraded with the presence of the malicious relay nodes, which are selected but refuse to cooperate for transmissions deliberately. In this paper, we formulate the relay selection issue as a restless bandit problem with the objective to maximize the average rate, while considering the credibility of each relay node, which may be different at each time instant. Then the optimization problem is solved by using the priority-index heuristic method effectively. Furthermore, a low complexity algorithm is offered in order to facilitate the practical implementations. Simulation results are conducted to demonstrate the effectiveness of the proposed trust-based relay selection scheme.

Using Central Manifold Theorem in the Analysis of Master-Slave Synchronization Networks

  • Castilho, Jose-Roberto;Carlos Nehemy;Alves, Luiz-Henrique
    • Journal of Communications and Networks
    • /
    • 제6권3호
    • /
    • pp.197-202
    • /
    • 2004
  • This work presents a stability analysis of the synchronous state for one-way master-slave time distribution networks with single star topology. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the synchronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase perturbations, are supposed to appear in the master node and, in each case, the existence and the stability of the synchronous state are studied. For parameter combinations resulting in non-hyperbolic synchronous states the linear approximation does not provide any information, even about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in a local neighborhood of these points. Thus, the local stability can be determined.

다양한 데이터 트래픽을 갖는 이동 애드혹 네트워크용 라우팅 프로토콜의 성능 분석 (Performance Analysis of MANET Routing Protocols with Various Data Traffic)

  • 김기완
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.67-72
    • /
    • 2021
  • MANET(Mobile Ad Hoc Network) is the structure in which a source node communicates with a destination node by establishing a route with neighbor nodes without using the existing wired or wireless network. Therefore, the routing protocol for MANET must correspond well to changes in the channel state of moving nodes, and should have simple operation, high reliability, and no routing loop. In this paper, the simulation was perform by using a traffic model with on/off two states provided by the NS-3 network simulator. Also, the duration of the ON state and the duration of the OFF state used the traffic where inter arrival time of data is irregular by generating random values with constant, exponential distribution, and Pareto distribution. The performance of the DSDV, OLSR, and AODV protocols was compare and analyzed using the generated traffic model.

Providing survivability for virtual networks against substrate network failure

  • Wang, Ying;Chen, Qingyun;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4023-4043
    • /
    • 2016
  • Network virtualization has been regarded as a core attribute of the Future Internet. In a network virtualization environment (NVE), multiple heterogeneous virtual networks can coexist on a shared substrate network. Thus, a substrate network failure may affect multiple virtual networks. In this case, it is increasingly critical to provide survivability for the virtual networks against the substrate network failures. Previous research focused on mechanisms that ensure the resilience of the virtual network. However, the resource efficiency is still important to make the mapping scheme practical. In this paper, we study the survivable virtual network embedding mechanisms against substrate link and node failure from the perspective of improving the resource efficiency. For substrate link survivability, we propose a load-balancing and re-configuration strategy to improve the acceptance ratio and bandwidth utilization ratio. For substrate node survivability, we develop a minimum cost heuristic based on a divided network model and a backup resource cost model, which can both satisfy the location constraints of virtual node and increase the sharing degree of the backup resources. Simulations are conducted to evaluate the performance of the solutions. The proposed load balancing and re-configuration strategy for substrate link survivability outperforms other approaches in terms of acceptance ratio and bandwidth utilization ratio. And the proposed minimum cost heuristic for substrate node survivability gets a good performance in term of acceptance ratio.

기능적 오류방지를 위한 크로스톡 글리치 제거 알고리즘 (Crosstalk Glitch Elimination Algorithm for Functional Fault Avoidance)

  • 이형우;김유빈;김주호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.577-580
    • /
    • 2004
  • Our paper focus on crosstalk noise problem, especially crosstalk glitch that occurs when victim is stable state and aggressor is transitive state. This generated glitch weigh with the functional reliability if the glitch is considerable. In this paper, we use buffer insertion, down sizing, buffer insertion with up-sizing methods concurrently. These methodologies use filtering effects which gates that have bigger noise margin than glitch width eliminates glitch. In addition, we do limited optimization in boundary of node's slack. Therefore, the operated node's changes are for nothing in other node's slack.

  • PDF

Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node

  • Zhang, Fuding;Zhou, Xu;Sun, Xiaohan
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.466-471
    • /
    • 2014
  • An asynchronous optical packet-switching (AOPS) node with load-balancing capability can achieve better performance in reducing the high packet-loss ratio (PLR) and time delay caused by unbalanced traffic. This paper proposes a novel dynamic load-balancing algorithm for an AOPS node with limited buffer and without wavelength converters, and considering the data flow distribution and service levels. By calculating the occupancy state of the output ports, load state of the input ports, and priorities for data flow, the traffic is balanced accordingly. Simulations demonstrate that asynchronous variant data packets and output traffic can be automatically balanced according to service levels and the data flow distribution. A PLR of less than 0.01% can be achieved, as well as an average time delay of less than 0.46 ns.