• Title/Summary/Keyword: node deployment

Search Result 147, Processing Time 0.034 seconds

Zigbee MAC Protocol based Super frame Design for In-body Nano-Network Applications (Zigbee MAC 프로토콜기반 인체 응용을 위한 나노 네트워크의 슈퍼 프레임 설계)

  • Lee, Kyung-Hwan;Kim, Sung-Un
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1690-1697
    • /
    • 2016
  • In a beacon-enabled Zigbee network, the slotted CSMA/CA mechanism based on the super frame structure fairly provides communication chance for each node and makes a reasonable usage of the available energy. In the case of wireless nano sensors that are implanted into the target human body area for detecting disease symptoms or virus, such a nano-network requires a similar type of channel sharing and transmission of short length event-driven data. In this paper, for nano-network's in-body applications, we aim to design conceptually a new super frame derived from the existing beacon-enabled Zigbee MAC protocol. And we analyze the efficiency of the proposed super frame in the aspect of practical deployment.

Standardization Trends for Operation of Unmanned Aerial Vehicles based on 5G (5G 기반 무인 비행체 운용 표준화 동향)

  • Lee, H.;Bae, J.S.;Bahng, S.J.;Lee, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.13-22
    • /
    • 2021
  • Among the activities of 3GPP for operating 5G-based unmanned aerial vehicles, we introduce several use cases of UAVs in 5G mobile communication such as radio access node onboard UAV, simultaneous support data transmission for UAVs and eMBB users, autonomous UAVs controlled by AI, isolated deployment of radio access through UAV, and separation of UAV service area. From this, we further summarize 5G mobile communication requirements for UAVs, including definition and operational criteria of UAS, UAS remote identification requirements, UAS usage requirements, and performance requirements. Finally, regarding 5G mobile communication-based UAS connectivity, identification and tracking support, we discuss the 3GPP UAV architecture, seven major problems, the proposed solutions to each problem, and propose the results for future specification work.

The Efficiency Key management for three dimensional node deployment in WSN (WSN에서 3차원 노드 배치에 따른 효율적인 키관리)

  • Lee, Kyeong-Hyo;Oh, Byeong-Kyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.1124-1127
    • /
    • 2008
  • WSN에서 센서 노드는 저전력을 필요로 함으로 에너지 소비를 최소화할 수 있어야 하고 기존의 키관리 방식에서 암호키 검색시간의 절약과 키의 위치정보 추출 방법에 따른 효과적인 암호 키 관리가 필요하다. 따라서 본 논문에서는 키의 배분 및 저장을 3차원 적인 위치기반 키관리 방식을 적용하여 키관리에 있어서 기존의 위치기반의 형식보다 경로키수를 줄여 센서 노드의 에너지 소비를 줄여 가용성 보장을 할 수 있게 하였다.

The Design and Implementation of RISE for Managing a Large Scale Cluster in Distributed Environment (분산 환경의 대규모 클러스터를 관리하기 위한 RISE 시스템의 설계 및 구현)

  • Park Doo-Sik;Yang Woo-Jin;Ban Min-Ho;Jeong Karp-Joo;Lee Jong-Hyun;Lee Sang-Moon;Lee Chang-Sung;Shin Soon-Churl;Lee In-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.421-428
    • /
    • 2006
  • In this paper, the way of remote installation and back-up of 3-tier structure is introduced for efficient utilizing the cluster system resources distributed at several places. Recently, cluster system is constructed as the system of over hundreds nodes under complex network system mixed with public networks and private networks. Therefore, the as installation method suitable for the large scale cluster system and the remote recovery of failure nodes are important. However the previous researches which are based on 2-tier architecture may not provide the efficient cluster installation and image back-up method when the network of cluster system is composed of several private networks and public networks. In this paper, RISE (Remote Installation Service and Environment) based on the 3-tier architecture is proposed to solve this problem. In our approach, the managing node's role is divided into the global master node (GRISE) and the local master node (LRISE) to provide the efficient initial system deployment and remote failure recovery of distributed cluster system under the various network systems. Also, LRISE's availability is ensured under the complex network environments by adopting the auto-synchronization mechanism between GRISE and LRISE. In this work, a 64-node cluster system with gigabit network system is utilized for the experiment. From the experimental result, the system image with 1.86GB data can be obtained in 5 minutes and 53 seconds and the image-based installation of 64-node system can be carried out in 17 minutes and 53 seconds.

Distributed Key Management Using Regression Model for Hierarchical Mobile Sensor Networks (계층적인 이동 센서 네트워크에서 회귀모델을 이용한 분산 키 관리)

  • Kim Mi-Hui;Chae Ki-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper, we introduce a novel key management scheme that is based on the key pre-distribution but provides the key re-distribution method, in order to manage keys for message encryption and authentication of lower-layer sensor nodes on hierarchical mobile sensor networks. The characteristics of our key management are as follows: First, the role of key management is distributed to aggregator nodes as well as a sink node, to overcome the weakness of centralized management. Second, a sink node generates keys using regression model, thus it stores only the information for calculating the keys using the key information received from nodes, but does not store the relationship between a node and a key, and the keys themselves. As the disadvantage of existing key pre-distributions, they do not support the key re-distribution after the deployment of nodes, and it is hard to extend the key information in the case that sensor nodes in the network enlarge. Thirdly, our mechanism provides the resilience to node capture(${\lambda}$-security), also provided by the existing key pre-distributions, and fourth offers the key freshness through key re-distribution, key distribution to mobile nodes, and scalability to make up for the weak points in the existing key pre-distributions. Fifth, our mechanism does not fix the relationship between a node and a key, thus supports the anonymity and untraceability of mobile nodes. Lastly, we compare ours with existing mechanisms, and verify our performance through the overhead analysis of communication, computation, and memory.

Analysis on Scalability of Proactive Routing Protocols in Mobile Ad Hoc Networks (Ad Hoc 네트워크에서 테이블 기반 라우팅 프로토콜의 확장성 분석)

  • Yun, Seok-Yeol;Oh, Hoon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.147-154
    • /
    • 2007
  • Network topology in ad hoc networks keeps changing because of node mobility and no limitation in number of nodes. Therefore, the scalability of routing protocol is of great importance, However, table driven protocols such as DSDV have been known to be suitable for relatively small number of nodes and low node mobility, Various protocols like FSR, OLSR, and PCDV have been proposed to resolve scalability problem but vet remain to be proven for their comparative superiority for scalability, In this paper, we compare and amine them by employing various network deployment scenarios as follows: network dimension increase's while keeping node density constant node density increases while keeping network dimension fixed, and the number of sessions increase with the network dimension and the number of nodes fixed. the DSDV protocol showed a low scalability despite that it imposes a low overhead because its convergence speed against topology change is slow, The FSR's performance decreased according to the increase of overhead corresponding to increasing number of nodes, The OLSR with the shortest convergence time among them shows a good scalability, but turned out to be less scalable than the PCDV that uses a clustering because of its relatively high overhead.

Slot-Time Optimization Scheme for Underwater Acoustic Sensor Networks (수중음향 센서네트워크를 위한 슬롯시간 최적화 기법)

  • Lee, Dongwon;Kim, Sunmyeng;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.4
    • /
    • pp.351-361
    • /
    • 2014
  • Compared to a terrestrial communication, the high BER(Bit Error Ratio) and low channel bandwidth are the major factor of throughput degradation due to characteristics of underwater channel. Therefore, a MAC protocol must be designed to solve this problem in UWASNs(Underwater Acoustic Sensor Networks). MAC protocols for UWASNs can be classified into two major types according to the contention scheme(Contention-free scheme and Contention-based scheme). In large scale of sensor networks, a Contention-based scheme is commonly used due to time-synchronize problem of Contention-free scheme. In the contention-based scheme, Each node contends with neighbor nodes to access network channel by using Back-off algorithm. But a Slot-Time of Back-off algorithm has long delay times which are cause of decrease network throughput. In this paper, we propose a new scheme to solve this problem. The proposed scheme uses variable Slot-Time instead of fixed Slot-Time. Each node measures propagation delay from neighbors which are used by Slot-time. Therefore, Slot-Times of each node are optimized by considering node deployment. Consequently, the wasted-time for Back-off is reduced and network throughput is improved. A new mac protocol performance in throughput and delay is assessed through NS3 and compared with existing MAC protocol(MACA-U). Finally, it was proved that the MAC protocol using the proposed scheme has better performance than existing MAC protocol as a result of comparison.

A Smart Sensor Device Management System in Nano-Q+ (Nano-Q+에서 스마트 센서 디바이스 관리 시스템)

  • Kim, Bum-Suk;So, Sun-Sup;Kim, Byeong-Ho;Eun, Seong-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Sensor Node OS should support unified API and efficient sensor device management system to overcome the diversity of sensors and actuators. However, conventional OSs like Tiny-OS and Nano-Q+ do not. In this paper, we propose a sensor device driver management system that present application programmers with unified API and easy deployment of sensors. When a sensor is deployed in our device management system, the device driver is downloaded. This scheme differs from traditional OS like SOS in that only sensor device driver is downloaded, not the whole application image. We designed and implemented the system into Nano-Q+. We described the comparison with other OSs and showed that our system obtains the considerable speedup of downloading.

Validation of Sensing Data Based on Prediction and Frequency (예측 및 빈도 기반의 센싱데이터 신뢰도 판단 기법)

  • Lee, SunYoung;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1398-1405
    • /
    • 2016
  • As wireless sensor networks become eligible as well as useful in several controled systems where surrounding environments are likely to be monitored, their stabilization become important research challenge. Generally, stabilization is mostly dependent on reliability of sensing value. To achieve such reliability in wireless sensor networks, the most of previous research work have tendency to deploy the same type of multiple sensor units on one node. However, these mechanisms lead to deployment problem by increasing cost of sensor node. Moreover, it may decrease reliability in the operation due to complex design. In order to solve this problem, in this paper, we propose a new validation scheme which is based on prediction and frequency value. In the proposed scheme, we take into exceptional cases account, for example, outbreak of fire. Finally, we demonstrate that the proposed scheme can detect abnormal sensing value more than 13 percent as compared to previous work through diverse simulation scenarios.

Simulation Study of Energy-efficient Routing Algorithm in Hierarchical WSN Environments (계층적 구조의 WSN 환경에서 에너지 효율적인 라우팅 알고리즘의 시뮬레이션 연구)

  • Kang, Moon-Kyoung;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1729-1735
    • /
    • 2009
  • The hierarchical routing could cause a lot of energy consumption for transferring data by assigning hierarchical routes although actual nodes could be located in physically near spots. Also, when Node Failure or Association Error occurs, the Hierarchical routing could waste more energy to deliver the control messages. This paper evaluate performance of SHP(Shortest Hop Routing) algorithm that suggests short-cut routing algorithm using NL(Neighbor List) and Redirect_ACK message to improve problem of hierarchical routing algorithm. We do a computer simulation by the size of network, deployment of sensor nodes, sink position and POS. As a result of simulation, SHP has better performance than Zigbee Hierarchical routing and HiLow.