• Title/Summary/Keyword: node density

Search Result 293, Processing Time 0.026 seconds

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.

Effect of Planting Density and Fertilizer Application Level on Yield and Agronomic Characters in a Semi-dwarf Soybean Cultivar (재식밀도와 시비량이 단경종 콩의 주요 생육형질과 수량에 미치는 영향)

  • 박춘봉;정진욱;황창주;소재돈;박노풍
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • The experiment was carried out to study the influence of planting space and fertilizer application levels on some agronomic characters and yield in newly released semi-dwarf soybeans, Paldalbong and Dankyungkong. The number of branches per plant was not reduced by planting space from 60${\times}$10cm 30${\times}$15cm. These Semi-dwarf soybeans had good adaptability on high planting density. The number of pods per node on the main stem was different according to the planting space in Dankyungkong, but it was similar in Paldalkong except planting space 20${\times}$10cm. Regardless of planting densities and varieties, the number of grains per pod on upper node of the main stem was large. Coefficient of variation of pods and grains per node in the middle part of the main stem was small. The number of grains per plant was decreased in high planting density compared to low planting density, but the number of harvested plant per unit area was increased. Optimum planting space was 25${\times}$10cm in both varieties. The ability of nodulation was bigger in Dankyungkong than in Paldalkong.

  • PDF

Adaptive Delaunay Mesh Generation Technique Based on a Posteriori Error Estimation and a Node Density Map (오차 예측과 격자밀도 지도를 이용한 적응 Delaunay 격자생성방법)

  • 홍진태;이석렬;박철현;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.334-341
    • /
    • 2004
  • In this study, a remeshing algorithm adapted to the mesh density map using the Delaunay mesh generation method is developed. In the finite element simulation of forging process, the numerical error increases as the process goes on because of discrete property of the finite elements and distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical error will be highly increased. However, it is not desirable to use a uniformly fine mesh in the whole domain. Therefore, it is necessary to reduce the analysis error by constructing locally refined mesh at the region where the error is concentrated such as at the die corner. In this paper, the point insertion algorithm is used and the mesh size is controlled by using a mesh density map constructed with a posteriori error estimation. An optimized smoothing technique is adopted to have smooth distribution of the mesh and improve the mesh element quality.

CAD Interface using Topology Optimization (위상최적설계 결과를 이용한 CAD 인터페이스)

  • Kim, Seong-Hoon;Min, Seung-Jae;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.281-289
    • /
    • 2009
  • Topology optimization has been widely used for the optimal structure design for weight reduction and high performance. Since the result of three-dimensional topology optimization is represented by the discrete material distribution in finite elements, it is hard to interpret from a design point of view. In this paper, the method for interpreting three-dimensional topology optimization resuIt into a series of cross-sectional curve representation is proposed and interfaced with the existing CAD system for the practical use. The concept of node density and virtual grid is introduced to transform element density values into grid density and material boundaries in each cross section are identified based on the element volume rate to satisfy the amount of material specified in the original design intent. Design exampIes show that three-dimensional topology result can be converted into a form of curve CAD model and the seamless interface with CAD software can be achieved.

Optimal Design of Extremely Small Thrust VCM for Nanoindenter (나노 인덴터용 미소 추력 보이스코일 모터의 최적 설계)

  • 조주희;이진우;이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In this paper, we propose the shape of extremely small thrust VCM for application of the Nanoindenter, which enables control of very small force and displacement. We performed optimization of the VCM shape using conjugated gradient method. And the purposes of optimization are the minimization of the permanent magnet size for the efficient systems, minimization of deviation of flux density from the air gap for operate on regular thrust and a linearization of thrust for a good control characteristic. The finite element method is used for characteristic analysis. The node moving method is used to redundant changes of design variables. As a result, the VCM produces a yew small force by the difference of flux density of lower part from higher one. Also, in a wide range of current (0[A]-1[A]), the VCM produces linear driving thrust by saturating the magnetic circuit path and operate on regular thrust by minimizing deviation of flux density of the air gap.

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

Growth and Yield of Sedum sarmentosum as Affected by Planting Density in Cultivation System Using a Rice Nursery Tray (벼 육묘상자를 이용한 돌나물 재배에서 삽식밀도에 따른 생육 및 수량)

  • Kim, Hyo-Jin;Lee, Seung-Yeob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.196-202
    • /
    • 2008
  • To establish a cultivation system of Sedum sarmentosum using a rice nursery tray ($30{\times}60{\times}3\;cm$) in non-heating plastic film house, cuttings of two local strains (Wanju and Keumsan) were prepared and planted at different planting densities (40, 60 and 80 cuttings per tray) on September 7th, and subsequent growth and yield at pre- and post-winter season were investigated. When pre-wintering growth were measured at 60 days after planting, high planting density (80 cuttings/tray) decreased leaf length and lateral shoot number per plant compared to 40 cuttings/tray. When post-wintering growth were measured on April 20th, no significant growth differences as affected by planting density were observed in Keumsan strain, while decreased stem diameter, node number and leaf number were observed in Wanju strain planted at 80 cuttings/tray compared to 40 cuttings/tray. Fresh and dry weights were not significantly different as affected by planting density, but those were significantly increased in Wanju strain compared to Keumsan strain. When regrowth characteristics followed by the first harvest were measured on June 5th, significantly increased stem number was observed at 80 cuttings/tray compared to 40 cuttings/ tray. Fresh and dry weight were significantly increased in Keumsan strain planted at 80 cuttings/tray compared to 40 cuttings/tray, and dry weight were increased in Wanju strain compared to Keumsan strain. Wanju strain showed higher shoot yield, thicker stem, shorter node and larger leaf, and non-succulent stem under high planting density compared to Keumsan strain. Accordingly, the optimum density was 40 cuttings per tray, and Wanju strain was adequate for the cultivation system using a rice nursery tray.

A Design of the efficient data aggregation using Hotspot Zone on Ad-hoc Networks (Ad-hoc 네트워크상에 Hotspot Zone을 이용한 효율적인 데이터 집계 설계)

  • Kim, Ju-Yung;Ahn, Heui-Hak;Lee, Byung-Kwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.17-24
    • /
    • 2012
  • As the resources and power on Ad-hoc networks are limited, new data aggregation techniques are required for energy efficiency. The current research on data aggregation techniques is actively in progress, but existing studies don't consider the density of nodes. If nodes are densely placed in a particular area, the information which the sensor nodes placed on those areas detect can be judged as very strong association. But, the energy spent transmitting this information is a waste of energy. In this paper the densely-concentrated node area is designated as Hotspot_Zone in the multi-hop clustering environment using the AMC and a key node is selected in the area. If the request message of data aggregation is transmitted, the key node among the neighboring nodes sends its environmental information to a manager to avoid duplicate sensing information. Therefore, the life of networks can be prolonged due to this.

Distribution of Inter-Contact Time: An Analysis-Based on Social Relationships

  • Wei, Kaimin;Duan, Renyong;Shi, Guangzhou;Xu, Ke
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.504-513
    • /
    • 2013
  • Communication in delay tolerant networks (DTNs) relies on message transport by mobile nodes, and a correct understanding of the node mobility characteristics is therefore crucial to the design of an efficient DTN routing protocol. However, previous work has mainly focused on uncovering all behaviors of node movement, which is not conducive to accurately detecting the specific movement characteristics of a different node. In this paper, we seek to address this problem based on a consideration of social relationships. We first consider social ties from both static and dynamic perspectives. For a static perspective, in addition to certain accidental events, social relations are considered for a long time granularity and tend to be stable over time. For a dynamic perspective, social relations are analyzed in a relatively short time granularity and are likely to change over time. Based on these perspectives, we adopted different efficient approaches to dividing node pairs into two classes, i.e., familiar and unfamiliar pairs. A threshold approach is used for static social ties whereas a density-based aggregation method is used for dynamic social relationships. Extensive experimental results show that both familiar and unfamiliar node pairs have the same inter-contact time distribution, which closely follows a power-law decay up to a certain point, beyond which it begins to exponentially decay. The results also demonstrate that the inter-contact time distribution of familiar pairs decays faster than that of unfamiliar pairs, whether from a static or dynamic perspective. In addition, we also analyze the reason for the difference between the inter-contact time distributions of both unfamiliar and familiar pairs.