• Title/Summary/Keyword: nocturnal boundary layer

Search Result 25, Processing Time 0.031 seconds

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF

Case Study of Variations in the Tropical Atmospheric Boundary Layer According to the Surface Conditions (지표 조건에 따른 열대 대기경계층 변화의 사례 연구)

  • Byoung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • The Rondonia Boundary Layer Experiment (RBLE-II) was conceived to collect data the atmospheric boundary layer over two representative surface in the Amazon region of Brazil; tropical forest and a deforested, pasture area. The present study deals with the observations of atmospheric boundary layer growth and decay. Although the atmospheric boundary layer measurements made in RBLE-II were not made simultaneously over the two different surface types, some insights can be gained from analysing and comparing with their structure. The greater depth of the nocturnal boundary layer at the forest site may be due to influence of mechanical turbulence. The pasture site is aerodynamically smoother and so the downward turbulent diffusion will be much pasture than over the forest. The development of the convective boundary layer is stronger over the pasture than over the forest. The influence of the sensible heat flux is important but may be not enough to explain the difference completely. It seems that energy advection may occur from the wet and colder(forest) to the dry and warmer area(pasture), rapidly breaking up the nocturnal inversion. Such advection can explain the abrupt growth of the convective boundary layer at the pasture site during the early morning.

  • PDF

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

Sudden rise of fine particle concentration after Typhoon USAGI and NARI passage in Busan (태풍 우사기와 나리 통과 후 부산지역 미세먼지 농도의 급상승에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.557-564
    • /
    • 2011
  • This study was conducted to investigate the sudden rise of fine particle concentration after the passage of typhoon USAGI and NARI in Busan. Nocturnal inversion layer was formed at atmospheric boundary layer and wind direction changed from southerly wind to northeasterly wind after USAGI passed through Busan. Fine particle concentration in Busan rapidly increased by subsidence of air pollutants released from sources and dust transported from in the vicinity of industrial regions. Wind direction changed from northeasterly wind to southeasterly wind, wind velocity increased and lower atmosphere became extremely unstable after NARI passed through Busan. $PM_{10}$ concentration of Busan increased sharply because of surface dust dispersed by strong wind. Fine particle concentration generally decreases by precipitation and wind after typhoon passes through. However, the concentration can also go up not only by subsidence and transportation in nocturnal inversion layer but also by surface dust which temporarily occurs by strong wind.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

Characteristic of the Nocturnal Inversion Layer observed by Tethersonde in Daegu (계류기구로 관측한 대구시 야간 안정층 특성에 관한 사례연구)

  • 김희종;윤일희;권병혁;허만천
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • Using measured data at Daegu by tethersonde for the period of 1984∼1987, we have investigated the lower atmospheric boundary layer structure including relationships between inversion layer and meteorological factors(wind and temperature), and the inversion strength and inversion height. The inversion layer was defined from the vertical temperature profile and its strength was analyzed with the wind shear as well as the vertical temperature gradient. From October to January, measured inversion layer isn't destroyed, however, in June, after sun rise, it is destroyed by surface heating and mixed layer is developed from surface. According to Pasquill stability classes, the moderately stable cases dominated. It's the larger vertical temperature gradient the lower SBL height. We have introduced B(bulk turbulence scale) which indicated SBL height. It's larger B, the higher SBL height and vice versa. It was noted that the bulk turbulence scale (B) is appropriate to determine the stable boundary layer height.

Case Study on the Mixed Layer Development using the UHF Radio Sounding (고도별 UHF 원격 관측을 이용한 혼합층 발달 사례 분석)

  • Kim, Sang-Jin;Kwon, Byung Hyuk;Kim, Kwang-Ho;Kim, Park Sa;Kim, Min-Seong;Jo, Won Gi;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.253-264
    • /
    • 2018
  • The GPS radiosonde is designed to conduct a full synoptic sounding to balloon burst using data generated from precision meteorological sensors and the GPS satellite network. The GPS radiosonde include proven, accurate temperature, humidity and capacitance aneroid pressure sensors. The atmospheric boundary layer was intensively observed in three islands of the west sea from 18 LST on March 9, 2016 to 06 LST on March 12, 2016. We investigated the restriction of nocturnal stable layer and rather the development of the mixed layer at night. On March 9, nocturnal mixed layer was developed by buoyancy heat flux. On the other hand, on March 10, the shear production was higher especially at 21 LST when the mixed layer height was the highest during the intensive observation period. The wind shear and the surface heat flux which produce the turbulent kinetic energy played an important role to grow the mixed layer even at night.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation

  • Choi, Hyo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.19-26
    • /
    • 2003
  • The dispersion of recycled particulates in the complex coastal terrain containing Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the passage of sea breeze and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates were dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.

  • PDF

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

The Analysis of the Nocturnal Ozone Variations over Kangreung and Wonju (강릉과 원주지역의 야간 오존 변화에 대한 분석)

  • Kim, Hyun-Sook;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.474-483
    • /
    • 2004
  • This paper analyzed the characteristics of daily ozone variations over Kangreung and Wonju. It was found that the diurnal cycle of ozone over Wonju has a primary ozone peak in the afternoon and a minimum around sunrise, which is a typical diurnal ozone cycle observable in the urban area. However, the cycle over Kangreung shows a primary peak in the afternoon and secondary peak around 3 a.m. The amounts of ozone in the secondary peak is occasionally higher than that in the primary peak. This nocturnal ozone peak is frequently observed year-round, and the highest frequency and extent are observed in spring. The possible cause of this nocturnal ozone increase was investigated using meteorological parameters and the HYSPLIT trajectory model. It was found that the nocturnal ozone peak is highly correlated with strong wind speed, which has led to positive temperature anomaly. The trajectory model revealed that when the secondary peak occurred, the air was originated from the west and a sinking motion subsequently followed. These findings suggested that when the westerly wind is strongest in spring, the polluted airs from urban areas are transported to the upper boundary layer over Kangreung area. In the case of strong wind during the night, nocturnal ozone peaks were produced by active vertical mixing between lower boundary and upper boundary layers.