• Title/Summary/Keyword: no-recrystallization temperature

Search Result 28, Processing Time 0.026 seconds

Effect of Annealing on Microstructural and Mechanical Property Variation of the Oxide-Dispersion-Strengthened Cu alloy (산화물 분산강화 동합금의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Kim Yong-Suk
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.25-32
    • /
    • 2006
  • The alumina dispersion-strengthened (DS) C15715 Cu alloy fabricated by a powder metallurgy route was annealed at temperatures ranging from $800^{\circ}C\;to\;1000^{\circ}C$ in the air and in vacuum. The effect of the annealing on microstructural stability and room-temperature mechanical properties of the alloy was investigated. The microstructure of the cold rolled OS alloy remained stable until the annealing at $900^{\circ}C$ in the air and in vacuum. No recrystallization of original grains occurred, but the dislocation density decreased and newly formed subgrains were observed. The alloy annealed at $1000^{\circ}C$ in the air experienced recrystallization and grain growth took place, however annealing in vacuum at $1000^{\circ}C$ did not cause the microstructural change. The mechanical property of the alloy was changed slightly with the annealing if the microstructure remained stable. However, the strength of the specimen that was recrystallized decreased drastically.

Effect of Sucrose and Gluten on Glass Transition, Gelatinization, and Retrogradation of Wheat Starch (밀전분의 유리전이와 호화 및 노화에 대한 sucrose와 글루텐의 영향)

  • Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.288-293
    • /
    • 2004
  • Differential scanning calorimetry (DSC) was used to study effects of sucrose and gluten on wheat starch glass transition, gelatinization, and retrogradation. Glass transition temperature ($T_{g}$) of wheat starch decreased as the ratio of sucrose or gluten to starch increased. Both peak temperature ($T_{G}$) and enthalpy values of gelatinization endotherm increased or decreased with increasing ratio of sucrose or gluten, respectively. Wheat starch gel with no sucrose and gluten recrystallized up to 4 weeks of storage at $4^{\circ}C$, whereas those with sucrose and gluten completed recrystallization within 1 week. Both wheat starch gels with no sucrose and gluten, and those with sucrose and gluten at storage temperature of $32^{\circ}C$ recrystallized up to 4 weeks, with wheat starch-sucrose-gluten (1 : 0.5 : 0.12) system, which had highest ratios of gluten and sucrose to starch, showing lowest recrystallization. Nucleation and propagation rates of starch gel recrystallization based on polymer crystallization principles can be converted into peak width (${\delta}T$) and peak temperature ($T_{R}$) of retrogradative endotherm by DSC, because higher nucleation rate at storage temperature of $4^{\circ}C$ close to $T_{g}$ showed higher ${\delta}T$, whereas higher propagation rate at $32^{\circ}C$ (close to $T_{G}$) had higher $T_{R}$.

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy (열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가)

  • Park, Sung-Hyun;Kim, Jae-Kwon;Kim, Seong-Woong;Kim, Seung-Eon;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

  • Gang Feng;Jian Lin;Shuai Yang;Boxuan Zhang;Jiangang Wang;Jia Yang;Zhongfeng Xu;Yongping Lei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4066-4076
    • /
    • 2023
  • Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanstätten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation.

Recent R&D status on friction stir welding of Ti and its alloys (티타늄과 그 합금의 마찰교반용접기술 현황)

  • Kang, Duck-Soo;Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.

The Effect of Zr Element on the Properties of Continuous Casting and Rolling Materials for Al - 0.11 wt.%Fe Alloy (Al-0.11Fe계 합금에서의 Zr, Sc원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Ji-Sang;Kim, Jin-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1099-1104
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especailly, the effect of a very small amount of Zr, Sc element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr, Sc addition up to 0.3 wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75{\sim}20.05\;kgf/mm^2$ and $420{\sim}520\;^{\circ}C$, was obtained at 0.3 wt.% Zr, Sc addition, respectively. Particles of the $Al_3Zr$ and $Al_3Sc$ phase affected the ambient and elevated-temperature strength of the alloys.

The Effect of Zr element on the Properties of Continuous Casting and Rolling Materials for Al-0.11 wt.%Fe Alloy (Al-0.11 Fe계 합금에서의 Zr원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Han-Eol;Kim, Han-Sik;Kim, Ji-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.519-520
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especially, the effect of a very small amount of Zr element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr addition up to 0.3wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75\;kgf/mm^2$ and $420^{\circ}C$, was obtained at 0.3 wt.% Zr addition, respectively.

  • PDF

Effects of Rolling Temperature on the Development of Microstructure, Texture, and Mechanical Properties in AZ31 Magnesium Alloy (AZ31 마그네슘 합금에서 압연온도가 미세조직과 집합조직 및 기계적 특성에 미치는 영향)

  • Park, No-Jin;Han, Sang-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • Wrought magnesium alloys show a low formability at room temperature, and a remarkable anisotropy of mechanical properties make it difficult to use them in a deformation process in industry. The microstructure and crystallographic texture of metals are developed during thermo-mechanical processes, and they are significant to the understanding of the mechanical properties of metals. This work studies the microstructure, texture development and tensile properties of the extruded AZ31 Mg alloy after rolling at 100 and $300^{\circ}C$. After 40% rolling at $100^{\circ}C$, many deformed twins were observed and a relatively weak texture developed. The basal poles were split and rotated towards the rolling direction about $20^{\circ}$. During 60% rolling at $300^{\circ}C$, the dynamic recrystallization (DRX) took place and developed a strong <0001>II ND fiber texture, which influenced the poor formability at room temperature.

Study for Prediction of Strain Distribution in Heavy Plate Rolling (후판압연에 있어서의 변형률 분포예측에 관한 연구)

  • Moon, C.H.;Lee, D.M.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.96-99
    • /
    • 2007
  • The microstructure with fine and uniform AGS(austenite grain size) along thickness direction over no recrystallization temperature is strongly required for production of the high strength steels. The previous AGS prediction only based on the average strain improves to find the rolling conditions for accomplishment of the fine grain, but cannot find those for uniform grain. In this paper, an integrated mathematical model for prediction of the strain distribution along thickness direction is developed by carrying out finite element simulation for a series of rolling conditions. Also, the AGS distribution after rough rolling is predicted by applying the proposed model with AGS prediction model.

  • PDF