• Title/Summary/Keyword: no-recrystallization temperature

Search Result 28, Processing Time 0.026 seconds

Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation (304 스테인레스강의 고온다단변형시 재결정 거동)

  • 조상현;김성일;유연철;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Microstructures and Properties of Molybdenum Wire Doped with Minim $La_2O_3$

  • Li, DaCheng;Bu, Chunyang;Zhu, Yong-An;Wang, Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1015-1016
    • /
    • 2006
  • The microstructures and properties of pure molybdenum wire and $Mo-La_2O_3$ alloy wire annealed at different temperatures are investigated systematically in this paper. It is shown that the recrystallization temperature, toughness and strength at room temperature of this wire was increased greatly by addition of $La_2O_3$. The room temperature embrittlement of this wire annealed at high temperature is improved remarkably.

  • PDF

Effects of Precipitates and Mn Solute Atoms on the Recrystallization Behavior of an Al-Mn Alloy

  • Lee, Yongchul;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.229-235
    • /
    • 2014
  • In this paper, the effects of precipitates and Mn-solute atoms on the recrystallization behavior of an Al-Mn alloy was studied using micro-Vickers hardness, electrical conductivity measurements and optical microscopy. Various thermo-mechanical processes were designed to investigate the different morphologies, and the solute concentration, of Mn in the matrix. The results indicate that the recrystallization temperature, $T_R$ and time, $t_R$, are influenced by the amount of M-solute atoms in the matrix, and that the recrystallization microstructure is influenced by the amount of precipitates. Recrystallization in the Slow-Cooling specimen was rapid due to its low concentration of Mn-solute atoms, and the crystal-grain size was the smallest due to finely distributed precipitates. However, in the case of the No-Holding specimen, elongated grains were observed at the low annealing temperature and the largest recrystallized grains were observed at the high annealing temperatures (compared with Slow-Cooling and Base specimens) due to the high Mn-solute atoms in the matrix.

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Austenite Recrystallization and Ferrite Refinement of a Nb Bearing Low Carbon Steel by Heavy Hot Deformation (강가공에 의한 Nb함유 저탄소강의 오스테나이트 재결정과 페라이트 미세화)

  • Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.3-11
    • /
    • 2005
  • Using various thermo-mechanical schedules characterized by varying reheating temperature, deformation temperature and strain, the austenite recrystallization and ferrite refinement of a Nb bearing low carbon steel(0.15C-0.25Si-1.11Mn-0.04Nb) were investigated. For single pass heavy deformations at $800^{\circ}C$, the 40% deformed austenite was not recrystallized while the 80% deformed one was fully recrystallized. Ferrite grains formed in the 80% deformed specimen was not very small compared with those in the 40% deformed specimen, which implied the recrystallized austenite was not more beneficial to ferrite refinement than the non-recrystallized one. In case of deformation in low temperature austenite region, a multi-pass deformation made finer ferrites than a single-pass deformation, as the total reduction was the same, due to more ferrite nucleation sites in the non-recrystallization of austenite for multi-pass deformation. When specimen was deformed at $775^{\circ}C$ that was $10^{\circ}C$ higher than $Ar_3$, the ferrite of about $1{\mu}m$ was formed through deformation induced ferrite transformation(DIFT), and the amount of ferrite was increased with increasing reduction. Dislocation density was very high and no carbides were observed in DIFT ferrites, presumably due to supersaturated carbon solution. By deformation in two phase(50% austenite+50% ferrite) region the very refined ferrite grains of less than $1{\mu}m$ were formed certainly by recovery and recrystallization of deformed ferrites and, a large portion of ferrites were divided by subgrain boundaries with misorientation angles smaller than 10 degrees.

Effects of Carbon and Sulfur Content on Mechanical Properties of High Purity Steel (고순도강의 기계적 성질에 미치는 탄소 및 황 함량의 영향)

  • Yoon, Jeong-Bong;Kim, Sung-Il;Kim, In-Bea
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • To lower the annealing temperature and the deviation of the mechanical properties of bake hardening steels, high purity steels were investigated. The steels were characterized by treating at low recrystallization temperature. It was confirmed that the strengthening originated from the solid solution of carbon and the ferrite grain refinement by fine MnS precipitates as carbon and sulfur contents increased in high purity steels. However, it was observed that there was no more increase of strength in steels containing over 40 ppm of carbon. It was considered that the excess carbon formed either the carbon cluster or the low temperature unstable carbides which had the negligible effect on the strengthening because they were reported to be highly coherent with the matrix. The carbon cluster and unstable carbides could be transformed to the stable cementite during bake hardening treatment. MnS was not observed in the high purity steel containing 5 ppm S, resulting in very coarse recrystallized grains and good ductility. As sulfur content increased, the recrystallized grain size decreased due to the formation of the fine MnS precipitates.

A Study on the Removal of Sulfate in Li2CO3 by Recrystallization (재결정화법을 이용한 탄산리튬 내 황산이온 제거에 관한 연구)

  • Kim, Ki-Hun;Cho, Yeon-Chul;Jang, In-Hwan;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.27-34
    • /
    • 2020
  • In order to remove sulfate(SO42-) and purify the Li2CO3, dissolution and recrystallization of crude Li2CO3 using distilled water and HCl solution was performed. When Li2CO3 was dissolved using distilled water, the amount of dissolved Li2CO3(wt.%) increased as the solution temperature decrease and showed about 1.50 wt.% at 2.5℃. In addition, when Na2CO3 was added and the Li2CO3 solution was recrystallized, the recrystallization(%) increased with increasing temperature, resulting in a 49.00 % at 95 ℃. On the other hand, when Li2CO3 was dissolved using HCl solution, there was no effect of reaction temperature. As the concentration of HCl solution increased, the amount of dissolved Li2CO3(wt.%) increased, indicating 7.10 wt.% in 2.0 M HCl solution. When the LiCl solution was recrystallized by adding Na2CO3, it exhibited a recrystallization(%) of 86.10 % at a reaction temperature of 70 ℃, and showed a sulfate ion removal(%) of 96.50 % or more. Finally, more than 99.10 % of Na and more than 99.90 % of sulfate were removed from the recrystallized Li2CO3 powder through water washing, and purified Li2CO3 with a purity of 99.10 % could be recovered.

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Prediction of Flow Stress of Steel in Consideration of Recrystallization (재결정거동을 고려한 강의 유동응력 예측)

  • 이동근;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.341-348
    • /
    • 1999
  • In the finite elemenet analysis of metal forming problems, the most critical input is the flow stress of workpiece. Conventionally, the flow stress of a metal at elevated temperatures is assumed to be a function of strain, strain rate and temperature, and obtained by experiment. However, if the workpiece is not continuously deformed as in mulit-pass rolling, the flow stress obtained by experiment is no longer valid because it does not consider the microstructure evolution occurring between deformations. In the present study, it was attemped that the flow stress of steel in the austenite region be obtained equations. It was applied to the prediction of flow stress variation at each stand during hot finishing rolling of steel.

  • PDF