• Title/Summary/Keyword: no-cement

Search Result 898, Processing Time 0.027 seconds

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Effect of core design on fracture resistance of zirconia-lithium disilicate anterior bilayered crowns

  • Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.181-188
    • /
    • 2020
  • PURPOSE. The effect of core design on the fracture resistance of zirconia-lithium disilicate (LS2) bilayered crowns for anterior teeth is evaluated by comparing with that of metal-ceramic crowns. MATERIALS AND METHODS. Forty customized titanium abutments for maxillary central incisor were prepared. Each group of 10 units was constructed using the same veneer form of designs A and B, which covered labial surface to approximately one third of the incisal and cervical palatal surface, respectively. LS2 pressed-on-zirconia (POZ) and porcelain-fused-to-metal (PFM) crowns were divided into "POZ_A," "POZ_B," "PFM_A," and "PFM_B" groups, and 6000 thermal cycles (5/55 ℃) were performed after 24 h storage in distilled water at 37 ℃. All specimens were prepared using a single type of self-adhesive resin cement. The fracture resistance was measured using a universal testing machine. Failure mode and elemental analyses of the bonding interface were performed. The data were analyzed using Welch's t-test and the Games-Howell exact test. RESULTS. The PFM_B (1376. 8 ± 93.3 N) group demonstrated significantly higher fracture strength than the PFM_A (915.8 ± 206.3 N) and POZ_B (963.8 ± 316.2 N) groups (P<.05). There was no statistically significant difference in fracture resistance between the POZ_A (1184.4 ± 319.6 N) and POZ_B groups (P>.05). Regardless of the design differences of the zirconia cores, fractures involving cores occurred in all specimens of the POZ groups. CONCLUSION. The bilayered anterior POZ crowns showed different fracture resistance and fracture pattern according to the core design compared to PFM.

COMPARISON OF FRACTURE STRENGTH BETWEEN HYBRID-CERAMIC CROWN AND METAL-CERAMIC CROWN (Hybrid-Ceramic Crown과 금속 도재관의 파절강도 비교)

  • Ku Chul-Whoi;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.14-24
    • /
    • 2001
  • The purpose of this study was to compare the fracture strengths and the fracture patterns of several hybrid-ceramic crowns and metal-ceramic crown. Ten crowns were constructed for each group according to the manufacturer's instruction. Removable template of silicone rubber impression material was used for standardization of each crowns. Each crown was cemented on a metal die with hybrid glass ionomer cement. All crowns cemented were stored in distilled water, $36^{\circ}C$ for 24 hours prior to loading in an universal testing machine. The load was directed at 130 degrees the long axis of metal die. The fracture strengths were measured and the fracture patterns were observed. The following results were obtained from this study 1. The mean fracture strengths of $Artglass^{(R)}$, $Sculpture^{(R)}$ and $Targis^{(R)}$ were $57.5{\pm}9.5Kgf,\;62.7{\pm}12.2Kgf$ and $60.2{\pm}10.1Kgf$ respectively. There was no significant difference among each hybrid ceramic crown group. 2. The toad required to fracture hybrid-ceramic crowns was significantly smaller than metal-ceramic crowns($131.7{\pm}22.0Kgf$). 3. In the metal-ceramic crowns, labial porcelain detached partially from porcelain-metal junction of proximal side by load. 4. Hybrid-ceramic crowns showed a simple fracture pattern that fracture line began at the loading area and extended through proximal surface, perpendicular to the margin. The crown was separated into two parts of labial side and lingual side. Above results revealed that three kinds of the hybrid-ceramic crowns used in this study must have careful application in clinical use since the strength of hybrid-ceramic crown was lower(about 1/2) than that of metal-ceramic crown.

  • PDF

A Study on the Utilization of Coal Ash as Construction Materials ln Forcus on the Environmental Analysis (석탄재의 건설재료로서의 활용에 관한 연구-환경적 특성 검토를 중심으로)

  • 천병식;고용일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 1995
  • Although lots of experimental studies of coal ash have been performed to study the utilization as construction materials, the environmental characteristics of coal ash are still qestionable. In this study, fly ash is examined to be classified according to Korean Environmental Standard and analized whether the batch test results are within the toler trance limit when utilized or treated as reclamation and earth work materials. The batch tests was performed to examine pH and contaminant contents. Consequently, fly ash is classified as non hazardous industrial waste. The pH value shows a strong alkalinity than the tolerance limit, but it is implied that fly ash can be used to neutralize the acid ground. All other items except pH satisfy the tolerance limit, In addition, a small quantity of additives(cement) which used to improve the poor geotechnical properties of coal ash, could decrease the pH value into the tolerance limit as well as improve strengtIL durability and permeability. It is concluded that when coal ash is used properly, there is no enviormental harmfulness as construction materials.

  • PDF

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Experimental Investigation of the Development of a Rotor Type Slurry Pump (로터형 슬러리 펌프 개발을 위한 실험적 연구)

  • Park, Sang-Kyoo;Yun, Jae-Geun;Yangr, Hei-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • The objective of this study was to develop an advanced pump technology using tornado and axial pumping principles without priming water. The developed rotor type slurry pump consisted of an electric motor, driving shaft and coupling, a rotor, an impeller, suction and discharge pipes. For the clean water test, the experimental results are presented for the discharge flowrate, electric power input and vacuum pressure with the rotor design parameters as a function of the motor rpm. The slurry discharge characteristics with the solid concentration of the cement slurry was performed. As the rotor diameter and height increase, the discharge flowrate and electric power input increase while the vacuum pressure in the suction pipe decreases. The rotor thickness had no significant effect on the discharge flowrate and electric power input. Slurries with more than 18 % solid concentration, which is the development factor, can be pumped.

Intentional partial odontectomy-a long-term follow-up study

  • Kim, Hyun-Suk;Yun, Pil-Young;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.29.1-29.5
    • /
    • 2017
  • Background: The surgical extraction of the third molar is the most frequently encountered procedure in oral and maxillofacial surgery and is related with a variety of complications. This study examined the efficacy of intentional partial odontectomy (IPO) in the third molars which have no periapical lesions and are located near important anatomical structures such as inferior alveolar nerve. Methods: Seven patients (four males, three females, $39.1{\pm}11.6years$), who received IPO to reduce the risk of inferior alveolar nerve injury (IANI), were followed long-term. The treated teeth were horizontally impacted third molars in the mandibular left (n = 5) or mandibular right (n = 4) areas and were all ankylosed with the surrounding alveolar bone. During the IPO, the bone around the crown was removed to expose the crown, and then the tooth was resected at cement-enamel junction (CEJ). Any secondary trauma to the healthy root was minimized and remained intact after primary suture. Results: The mean follow-up time was $63.2{\pm}29.8months$, and all sites showed good bone healing after the crown removal. Also, sensory abnormality was not found in any patients after IPO. In one patient, the bone fragments erupted 4 months after IPO. In other patient, an implant placed on second molar site adjacent to the third molar that received IPO was explanted about 2 years after the patient's persistent discomfort. Conclusions: In case where high risk of IANI exists, IPO may be chosen alternatively to surgical extraction to reduce the risk of nerve damage.

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.

Photoelastic Stress Analysis of Proximal Margins in Dental Restorations (치관보철물(齒冠補綴物)의 인접변연부위(隣接邊緣部位)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Lim, Chung-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 1980
  • The purpose of this study was to investigate the stresses in different proximal margins and to measure, quantitatively, the effect of different modifications in the design of preparations on the stresses using two-dimensional photoelasticity. Photoelastic stress analysis is based on the phenomenon, exhibited by most transparent solids, of becoming birefringent, or doubly refracting, when strained. Two birefringent materials were used in this study, PSM-1 and PSM-5 in .standard sheet ($10'{\times}10'{\times}\frac{1}{4}'$ thickness), PSM-1(polyester) was used for constructing the substructure, and PSM-5(epoxy resin) was used in making the restorations to be investigated. Two birefringent materials were used in the construction of composite photoelastic model. Seven variable models were constructed. The peripheral dimensions of all model were constant and the models represent an occlusomesial section of a lower posterior molar. Model 1 represents the knife edge margin (shoulderless), Model 2 represents the chamfer, Model 3 represents a rounded shoulder(no sharp angle between the axial wall and gingival floor), Model 4 represents a flat shoulder (axial wall is a $90^{\circ}$ angle to the gingival wall), Model 5 represents $+15^{\circ}$ angulation, Model 6 has a $-15^{\circ}$ angulation, and Model 7 is the same as Model 4 except that it has a $45^{\circ}$ bevel. Improved artificial stone was used to represent dental cement in luting the composite photoelastic model. Static loading procedures(100 pounds) were used at preplanned sites. The results were as follows; 1. The stresses in the proximal portion of all tested models were compressive in nature when the proximal shoulders were loaded vertically on the same proximal marginal ridge. 2. The round and chamfered preparations were the optimum designs in proximoocclusal restorations. They showed the lowest stress concentration factor, i.e. 2.16 and 2.23, respectively. The knife edged shoulder had the highest value, K=5.39. Round type shoulder geometry experiments reduced the stress concentration factor (S.C.F.) 3. The gingival portion of proximal shoulder geometry was a critical location for stress concentration.

  • PDF

Fracture strength of the IPS Empress crown :The effect of incisal reduction and axial inclination on upper central incisor (IPS Empress 도재관의 파절강도 : 상악 중절치에서 절단연 삭제량과 축면 경사도에 따른 영향)

  • Song, Byung-Kwen;Lee, Hae-Hyoung;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2000
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the incisal depth(2.0mm, 2.5mm, 3.0mm) and axial inclination($4^{\circ}$, $8^{\circ}$, $12^{\circ}$) of the upper central incisor. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results were : 1. The fracture strength of the ceramic crown with 2.5mm depth and $8^{\circ}$ inclination was the highest(965N). Crowns of 2.0mm depth and $4^{\circ}$ inclination had the lowest strength(713N). There were no significant differences of the fracture strength by axial inclination in same incisal depth group. 2. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin irrespective of incisal depth. There had correlation between fracture strength and fractured surface area.

  • PDF