• Title/Summary/Keyword: no-cement

Search Result 895, Processing Time 0.028 seconds

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Characteristics of Generated Fibrous/Particulate Matters from Asbestos-Containing Building Materials(ACBMs) (해체·제거 작업 시 석면함유 건축자재에서 발생되는 섬유 및 입자상 물질의 특성)

  • Choi, Sungwon;Jang, Kwang Myoung;Park, Kyung Hoon;Kim, Dae Jong;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.184-193
    • /
    • 2015
  • Objectives: This study focused on three aspects: characterizing concentrations of airborne particles by size distributions and asbestos fibers generated by various building materials; analyzing the characteristics of fibers produced by each simulation and asbestos fibers released from ACBMs; and investigating correlations of airborne asbestos fibers and particles generated and association of particle and asbestos concentrations. Methods: We selected three ACBMs including an insulation board, cement asbestos slate and wallboard. We constructed 4 scenarios; a) crushing with a hammer; b) cutting with a industrial knife; c) brushing with a metal brush; and d) tightening & loosening with a hand drill. We implemented one simulation for 30 seconds followed by 30 seconds resting period. We repeated a total of 5 cycles for 5 minutes. Results: The highest concentration of particulate & fibrous matters was from crushing with a hammer in each scenario followed by brushing with a metal brush, cutting with a industrial knife, and tightening & loosening with a hand drill. For ACBMs studied, asbestos concentrations were highest from an insulation board followed by cement asbestos slate, and wallboard. No difference in terms of concentration was found between an insulation board and asbestos slate. Fibers with $5{\sim}20{\mu}m$ in length were included in 76~90% of total fibrous matters. The distribution of the straight form fibers was greater than that of the curl form. About 90% of $PM_{Total}$ released from ACBMs was consisted of $PM_{10}$ while only 10% of $PM_{Total}$ was $PM_{2.5}$. Particulate matters like $PM_{2.5}$ was significantly correlated with fibrous matters($R^2=0.81$). Conclusions: We found ACBMs can significantly release asbestos fibers as well as $PM_{2.5}$. Concentrations of asbestos generated by ACBMs were well correlated with $PM_{2.5}$.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

Petrological and Geological Safety Diagnosis of Multi-storied Stone Pagoda in the Daewonsa Temple, Sancheong, Korea (대원사 다층석탑의 지질학적 및 암석학적 안전진단)

  • 이찬희;서만철
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • The multi-storied Daewonsa stone pagoda (Treasure No. 1112) in the Sancheong, Korea was studied on the basis of deterioration and geological safety diagnosis. The stone pagoda is composed mainly of granitic gneiss, partly fine-grained granitic gneiss, leucocratic gneiss, biotite granite and ceramics. Each rock of the pagoda is highly exfoliated and fractured along the edges. Some fractures in the main body and roof stones are treated by cement mortar. This pagoda is strongly covered with yellowish to reddish brown tarnish due to the amorphous precipitates of iron hydroxides. Dark grey crust by manganese hydroxides occur Partly, and some Part coated with white grey gypsum and calcite aggregates from the reaction of cement mortar and rain. As the main body, roof and upper part of the pagoda, the rocks are developed into the radial and linear cracks. Surface of this pagoda shows partly yellowish brown, blue and green patchs because of contamination by algae, lichen, moss and bracken. Besides, wall-rocks of the Daewonsa temple and rock aggregates in the Daewonsa valley are changed reddish brown color with the same as those of the pagoda color. It suggests that the rocks around the Daewonsa temple are highly in iron and manganese concentrations compared with the normal granitic gneiss which color change is natural phenomena owing to the oxidation reaction by rain or surface water with rocks. Therefore, for the attenuation of secondary contamination, whitening and reddishness, the possible conservation treatments are needed. Consisting rocks of the pagoda would be epoxy to reinforce the fracture systems for the structural stability on the basements.

Structure and physical properties of the earth crustal material in the middle of Korean Peninsula : A study on the prescription of standard test by mortar-bar method (한반도 중부권 지각물질의 구조와 물성연구 : 콘크리트 공시체에 의한 표준시험 규정에 대하여)

  • 정진곤;유신애
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.193-200
    • /
    • 1995
  • It has been well known that the alkali-aggregate reaction between the aggregates and cement paste is one of the reasons of a concrete siructre expansion. Because of a serious demage on the concrete stnicture from the expansion, in many countries, the safety of the materials is checked in laboratory by mortar-bar test and the upper limit of expansion in length is 0.1%. The prescriptions are presented in the ASTM C227 and 490 of U.S. which has been international currency and in the KS Handbook F2503, F2546 and L5107 of Korea published by Korean Standards Association. Both of the prescriptions are almost same in their contents. Actually, in the process of preparing and measuring the mortar-bar according to the prescription mentioned above, it seems that there are no problems for its own purpose but a few points are found to be improved upon the methods to increase the accuracy for laboratory work as follows. 1. The prescription of blending ratio(aggregate, cement and water) should be noted by volume not by weight. 2. It is unreasonable to measure the initial length of mortar bars after 24$\pm$2 hours at once regardless the kind of aggregates. 3. It may bring about errors in calculating the expansion ratio under the condition of the denominator value fixed as 254mm. 4. The measuring methods of specific gravity are selected according to the purposes but the pure specific gravity displays the highest accuracy among them.

  • PDF

A Study on the Reinforcement Effect Analysis of Aging Agricultural Reservoir using Surface Stabilizer (표층안정재를 사용한 노후 농업용 저수지의 보강효과 분석에 관한 연구)

  • Kim, Jae-Hong;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • In Korea, small reservoirs have been constructed for the supply of agricultural water, but most of them have been over 50 years from the year of construction. Aging agricultural reservoirs are being investigated for serious defects such as leaks and movements in slope, which are very vulnerable to safety. Accordingly, grouting methods are used to reinforce aging agricultural reservoirs in Korea. However, cement used as a grouting injection material consumes natural resources and generates a large amount of greenhouse gases during production. In addition, there is a problem that sufficient reinforcement is not made due to various factors such as the injection amount, the compounding ratio, the injection pressure, and etc. Therefore, due to these problems, the development of new materials and methods that can replace the grouting method and cement is required. In order to solve these problems, this study conducted an laboratory test on the surface stabilizer used to secure the stability of road and rail slopes. In addition, the program was analyzed and the reinforcing effect was examined when the surface stabilizer was used as reinforcement material for aging agricultural reservoir. As a result of the laboratory test, when the surface stabilizer is mixed, the increase of cohesion is possible up to 9% and there is no change in the friction angle. The results of the program analysis showed that the 1.0m reinforcement of slopes increased the factor of safety by 1.4 times, making it possible to reinforce the aging agricultural reservoir using surface stabilizers. And as a reinforcement method, it was analyzed that it is most appropriate to reinforce the slope and the bottom of slope simultaneously.

Evaluation of Corrosion Effects on Permanent Ground Anchors (영구 지반앵커에 대한 부식의 영향 평가)

  • Park, Hee-Mun;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 2004
  • The corrosion rate measurement procedure for the permanent ground anchors using polarization resistance measurements and electrochemical impedance spectroscopy is presented in this paper. The polarization resistance measurements were used to determine the correlation between corrosion rate in the steel and soil characteristics. The electrochemical impedance spectroscopy was used to predict the time dependent corrosion reaction and evaluate the different type of coating systems and the effect of cement grouting on the corrosion attack under various conditions. The results indicate that a low pH soil is a good indicator of a corrosive soil. The low pH soil condition (<5) in both clay and sand has a significant effect on the corrosion reaction of steel members in permanent found anchors. In the case of neutral and alkaline conditions beyond pH 6 in clay and sand, no consistent acceleration of corrosion was measured and the corrosion rate was constant regardless of variations of soil pH levels. Laboratory test data for porcelain clay indicate that the change of soil pH level has a small influence on the corrosion reaction in the steel member. The use of cement footing in the bonded length is sufficient to decrease the corrosion rate to a level close to 0.003∼0.01mm/y at the end of the given period. With epoxy and fusion bonded epoxy coating, the steel specimens remained unaffected and retained the original condition. It is suggested that epoxy and fusion bonded epoxy coating can provide effective protection against corrosion for a long time even in aggressive environment.

Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

  • Rodiger, Matthias;Rinke, Sven;Ehret-Kleinau, Fenja;Pohlmeyer, Franziska;Lange, Katharina;Burgers, Ralf;Gersdorff, Nikolaus
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • PURPOSE. To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS. Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: $5.7^{\circ}$; customized-long, height: 6.79 mm, taper: $4.8^{\circ}$; customized-short, height: 4.31 mm, taper: $4.8^{\circ}$) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: $5.7^{\circ}$) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS. Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION. No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN PORCELAIN LAMINATE VENEERS WITH VARIOUS AMOUNTS OF INCISAL COVERAGE AND TYPES OF INCISAL FINISH LINE UNDER TWO LOADING CONDITIONS (절단피개량과 절단변연형태 및 하중각도가 도재라미네이트 베니어 내의 응력분포에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Ryoo, Kyung-Hee;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.143-166
    • /
    • 1999
  • The success of porcelain laminate veneer depends on the bond strength between tooth structure and ceramic restoration and the design of tooth preparation. In particular, incisal coverage and incisal finish line are the two most important factors in long-term fracture resistance. Although the majority of clinicians are practicing incisal coverage and there are various opinions on the geo-metrical ratio between the clinical crown length of the remaining tooth structure and the length of incisal extension in porcelain laminate veneer and the optimal incisal finish lines. scientific evidence still loaves much to be desired. The purpose of this study was to determine the effects of the amounts of incisal coverage and the types of incisal finish line on the stress distribution in maxillary anterior porcelain laminate veneers under two different loading conditions. Three-dimensional finite element models of a maxillary anterior porcelain veneer with differ-ent amounts of incisal coverage ; 0, 1, 2, and 3mm and different incisal finish lines feathered edge, incisal bevel, reverse bevel and lingual chamfer with various amounts of lingual extension were developed. 300N force was applied at the point 0.5mm cervical of the linguoincisal edge in two loading conditions ; A) 125 degrees, B) 132 degrees. Tensile and compressive stress in ceramic and shear stress in the resin cement layer were analyzed using three-dimensional finite element method. The results were as follows : 1. The types of incisal finish line had more influence on the stress distribution in porcelain laminate veneer than the amounts of incisal coverage. 2. In case of no incisal coverage, incisal beveled laminate exhibited more evenly distributed tensile stress than feathered edged laminate. And in case of incisal coverage, reverse beveled laminate and lingual chamfered laminate with 1mm lingual extension exhibited more evenly distributed tensile stress than lingual chamfered laminates with 2mm and 3mm lingual extension. 3. As long as the lingual chamfer goes, less tensile stress was found at the incisal edge, while much more tensile stress was found at the lingual margin area in proportion to the length of lingual extension. 4. Under 125 degree load, tensile stress in porcelain laminate veneer had increased compared with that under 132 degree load and the difference exhibited by the change of the amount of tooth support was larger. 5. The types of incisal finish line and the distance from the incisal finish line to the loading point had more influence on the shear stress distribution in the resin cement layer than the amounts of incisal coverage. In contrast loading condition had little influence.

  • PDF

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.