• Title/Summary/Keyword: no removal

Search Result 2,627, Processing Time 0.032 seconds

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

Comparative Efficiency Evaluation of Air Cleaners for Improving Indoor Air Quality (실내용 공기청정기 유형별 실내환경개선 성능에 대한 비교평가)

  • Na, Kyung-Ho;Son, Jin-Seok;Sung, Kijune;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.109-115
    • /
    • 2005
  • This study was conducted to evaluate the efficiency of indoor air cleaners and to inform how to select them correctly to the users. The efficiencies of removing suspended bacteria per hour were $64.3{\pm}13.1%$ for filter, wet, and complex type, respectively, which showed the complex type was the most efficient. The removal efficiencies of formaldehyde (HCHO) after two hours operation of air cleaners showed 88.3% and 81.1% for filter and wet type, respectively. The efficiency of complex type, with removal rate of 55.5~58.4%, was decreased after 30 minutes operation. Therefore, it is recommended to perform over 60 minutes when doing air cleaner certification test for HCHO removal efficiency. Generally, air cleaners having low wind volume showed higher efficiency. All tested air cleaners had no potential for removing of volatile organic compounds (VOCs), which is toxic substances, and it is desirable to develop a device which can control these substances. The results also confirmed that there was no ozone production from all tested air cleaners. And it is recommended to ventilate for 20 minutes every four hours to maintain 50% ventilation status.

Effect of Magnetic Field on NOX Removal for Wire-Plate Plasma Reactor (선대 평판형 플라즈마 반응기에서 NOX 제거에 미치는 자계의 영향)

  • Park, Jae-Yun;Go, Hui-Seok;Son, Seong-Do;Lee, Dong-Hun;Kim, Jong-Dal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.120-124
    • /
    • 2000
  • In this paper, the effect of magnetic field was measured on NOx(NO+NO2) removal and consumption power for wire-plate plasma reactor with magnetic field applied to electric field vertically. NOx of the simulated diesel engine flue gas were removed by the corona discharge generated by DC, AC and Pulsed voltages in wire-plate reactor. Consumption power increased with discharge voltage. However, when magnetic field was applied to electric field vertically, consumption power slightly decreased. NOx removal rate and arc transition voltage for plasma reactor with magnetic field were higher than those for plasma reactor without magnetic field. Consumption power decreased, however NOx removal significantly increased, when water vapour bubbled by dry air was put into simulated flue gas.

  • PDF

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

HISTOMORPHOMETRIC AND REMOVAL TORQUE VALUES COMPARISION OF ROUGH SURFACE TITANIUM IMPLANTS (임프란트 표면처리 방법에 따른 골유착의 조직계측학적 분석 및 제거회전력 비교 연구)

  • Lee, Sang-Chul;Song, Woo-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.5
    • /
    • pp.396-405
    • /
    • 2001
  • Osseointegrated implants are used for the fixation of dental prosthesis with good long-term clinical results. In an attempt to improve the quantity and quality of the bone-implant interface, numerous implant modification have been used. Implants surface modifications have been used such as titanium-plasma sprayed, hydroxyapatite-coating, sandblasted, sandblasted and acid-etched, acid-etched. Rough surface implants have greater implant surface area and enhance the bone-implant interface and improve stabilization. The purpose of present study was to evaluate light microscopic and scanning microscopic examinations and removal torque value of newly developed calcium phosphate blast and acid-etched implant in the femur of rabbits. Titanium plasma sprayed(TPS) implant served as controls. After 12 weeks of healing of the femurs of 12 rabitts, the implant-containing segments of femur were removed on bloc and bone block including sections. Histologic examination and histomorphometric and removal torque values comparision were made for two implants. Obtained results are follows: 1. Newly developed calcium phosphate blasted and acid-etched implants were in close contact with bone under light microscopic examinations. 2. New implants showed mean bone-to implant contact 59.8%, whereas TPS implants showed mean bone-to implant contact 54.5% (statistically no difference p<0.05). 3. New implants showed mean bone density 56.7%, whereas TPS implants showed mean bone density 49.2% (statistically difference p<0.05). 4. New implants demonstrated mean removal torque values 40.5Ncm, whereas the mean removal torque values of TPS implants ranged 39.3Ncm. No statistical differences(p<0.05) were observed between two groups of implants nor was there any difference between the two implants at the clinical level.

  • PDF

The Effect of Hypochlorous Acid on the Nitrogen Removal in Sea Water (차아염소산이 해수 내 암모니아 제거에 미치는 영향)

  • Kim, Young-Jun;Jang, Jae-Eun;Lee, Sang-Wook;Cha, Seok-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • In this study, we had analyzed the ammonia removal efficiency in sea animal-culturing aquarium water using hypochlorous acid (HOCl) which is very reactive, no harm to human, and with no formation of toxic trihalomethane. The amount of hypochlorous acid for the removal of ammonia varied with the concentration of ammonia in samples, with 90% of removal efficiency for 30 minute reaction time in the sea water where the ratio of hypochloous acid to ammonia (w/w) is about 8.5 ~ 9.0, and 100% removal in the sample with the ratio of 9.8 ~ 10.1. The removal efficiency with the time was shown to be 90% within 10 minute in the ratio of 9.0 ~ 10.0. These results will effectively be used for the proper management and protection of sea animals in large aquarium through water clarification with hypochlorous acid by calculating the right amount and reaction time.

Simultaneous Removal of Carbon and Ammonia Nitrogen from Recirculation Water in High Density Seawater Aquaculture Farm (고밀도 해산어 양식장 순환수로부터 유기물 및 암모니아질소 동시 제거)

  • 정병곤;김문태;이헌모
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Treatability tests were conducted using EMC process to study the feasibility of applying this process as recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading on system performance, hydraulic retention time of reactor was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 10 min gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies until 2hr of HRT, however, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic deterioration in removal efficiencies depending on HRT reduction. More than 90% of removal efficiencies were maintained successfully when the system was operated at the HRT of 10 min. In case of system performance depending on media packing ratio in reactor, there was little difference in each reactor performance depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr, however, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. That is, the more reactor was packed, the better reactor performed. When comparing reactor performance among 25%, 50%, 75% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

Nitrogen Removal from Synthetic Domestic Wastewater Using the Soil Column (토양컬럼을 이용한 합성하수 중의 질소제거)

  • Cheong, Kyung-Hoon;Lim, Byung-Gab;Choi, Hyung-Il;Park, Sang-Ill;Moon, Ok-Ran
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • A laboratory experiment was performed to investigate nitrogen removal by the soil column. The addition of 20% waste oyster shell to the soil accelerated nitrification in soil column. The $NO_3^--N$ concentration in the effluent decreased with the decrease of HRT(Hydraulic Retention Time). When methanol and glucose added as carbon sources, the average removal rates of T-N(Total Nitrogen) were 82% and 77.9%, respectively. The $NO_3^--N$ removal by methanol supplementation in soil column can likely be attributed to denitrification. In continuous removal of nitrogen using the soil column, the COD(Chemical Oxygen Demand) and $NH_4^+-N$ removed simultaneously in organic matter decomposing column. The greater part of $NH_4^+-N$ was nitrified by the percolated through nitrification column, and the little $NH_4^+-N$ was found in the effluent. The T-N of 87.4% removed at HRT of 36 hrs in denitrfication column. Because of nitrified effluents from nitrification column are low in carbonaceous matter, an external source of carbon is required.

A Study on the Treatment of a High-Strength Organic Wastewater by the Tube Type Fixed Biofilter Process (엔통형 고정상 생물막법에 의한 고농도 유기성 폐수처리에 관한 연구)

  • 손종렬;장명배;문경환
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.22-27
    • /
    • 1994
  • This study is to discuss the factors influenced on the removal efficiency of a high-strength organic wastewaters investigated using the polypropyrene media which appropriate to attach microorganism in the tube type fixed biofilter reactor. The results obtained in the experiment were as follows: 1. The kinetics of reaction rate (k') were 0.125, 0.135, 0.155 varing initial COD 720, 1280, 1630 mg/l in batch reactor. 2. In the range of pH 4.0 ~12.0 was obtained the removal efficiency of COD higher than 85%. It was proved that variation of pH (4.0 ~12.0) was nothing to do with the removal efficiency of substrate in continuous reactor. 3. Temperature to obtain removal efficiency of COD higher than 85% was 10 ~ 40$\circ$C. Removal efficiency of COD was no less than those at high temperature. 4. In the continuous reactor, the volumetric loading of COD for removal efficiency higher than 95% had to be 0.5~1.5 kg COD/m$^3$.d below. And then the HRT was 8 hrs. 5. In comparison with the activated sludge process, the tube type fixed biofilter process was excellent in removal efficiency of substrate and sludge production rate.

  • PDF

A Study on the Limiting Factors in Wastewater Treatment by Contact Oxidation Process (접촉담화공정에 의한 폐수처이에 있어서의 제한요권에 관한 연구)

  • 황상용;손종열;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 1990
  • This study is to discuss limiting factors influenced on the removal efficiency of organic materials investigated using the polypropyrene biofilter which appropriate to attach micro-organism in order to apply the contact oxidation proce,:5. The results obtained in the experiment were as follows : 1. In the range o: pH 4.0~ 12.0 was obtained the removal efficiency of COD higher than 85% It was proved that variation of pH(4.0 ~ 12.0) was nothing to do with the removal efficiency of substrate in continuous reactor. 2. Temperature to obtain removal efficiency of COD higher than 85% was $10^{\circ}$ ~$40^{\circ}$. Removal efficiency of COD was no less than those at high temperature if MLVSS concentration was maintained 8,000~ 15,000 m/1. 3. In the continuous reactor, the volumetric loading of COD for removal efficiency higher than 95% had to be 0.5~1.5 kg COD/.d below. And then the HRT was Bhrs. 4. In comparison with the conventional activate sludge process, the contact oxidation process was excellent in removal efficiency, sludge production rate and maintenance.

  • PDF