• Title/Summary/Keyword: nitroreductase genes.

Search Result 2, Processing Time 0.015 seconds

Biological Effect of Metronidazole Resistance in Helicobacter Pylori (Helicobacter pylori에서 metronidazole 내성이 미치는 생물학적 영향)

  • Lee Gin Hyug;Lee Sun-Mi;Nam Won-Hee;Kim Eun Sil;Kim Jin Ho;Kang Ho Young;Jeong Jin-Yong
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.955-960
    • /
    • 2005
  • Resistance to metronidazole, a key component of therapies against Helicobacter pylori, is common in clinical isolates. Resistance generally requires inactivation of rdxA (HP0954), and sometimes also frxA (HP0642), two related nitroreductase genes. Here we studied the effect of resistance to metronidazole on fitness of the gastric pathogen H. pylori. The effect of metronidazole resistance for H. pylori in culture was assessed first by looking at colonies formed by freshly constructed mutant derivatives of H. pylori strain 26695. Mutations resulting in metronidazole resistance caused premature death of H.pylori in stationary phase, but had no significant effect on early exponential growth. The effect of nitroreductase deficiencies on fitness in vivo was tested by infecting C57BL/6 mice with 1:1 mixtures of SS1 wild type and its isogenic metronidazole resistant derivatives. Inactivation of rdxA caused an inability to colonize mice in SS1 H. pylori strain. Derivatives of a metronidazole resistant strain that survived better in stationary phase, although remaining metronidazole resistant, could again colonize mice. In conclusion, metronidazole resistance diminishes H. pylori's fitness, but their costs can be suppressed by additional mutation.

Mechanism of Metronidazole Resistance Regulated by the fdxA Gene in Helicobacter pylori. (헬리코박터 파일로리에서 fdxA 유전자에 의한 메트로니다졸 내성 조절 기전 연구)

  • Nam, Won-Hee;Lee, Sun-Mi;Kim, Eun-Sil;Kim, Jin-Ho;Jeong, Jin-Yong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.723-727
    • /
    • 2007
  • Resistance to metronidazole in Helicobacter pylori results from inactivation of rdxA and frxA, the chromosomal genes for a nitroreductase that normally converts metronidazole from prodrug to bactericidal agent. Two types of metronidazole susceptible strains had been found distinguishable by their apparent levels of frxA expression. Most common in the populations we had studied were strains that required only rdxA inactivation to become resistant to moderate levels of metronidazole(type I strains). The second strain type required inactivation of both frxA and rdxA to become resistance to metronidazole(type II strains): this was linked to a relatively high level of frxA gene transcription in the type II strains. The fdxA gene regulated fdxA as well as rdxA gene. Thus, to study the function of fdxA as a regulatory gene we constructed a null mutant of fdxA in H. pylori genome and identified over-and under-expressed proteins by fdxA using two-dimensional(2-D) electrophoresis and MALDI-TOP-MS. There were four over-expressed proteins in fdxA mutant; nifU-like protein(HP0221), frxA(HP0642), nonheme ferritin(HP0653), and hypothetical protein(HP0902). Three under-expressed proteins were also identified in fdxA mutant, including 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (HP0089), (3R)-hydroxymyristoyl ACP dehydratase(HP1376), and thioredoxin(HP1458).