• Title/Summary/Keyword: nitrogen-fixation

Search Result 267, Processing Time 0.03 seconds

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi (식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.603-613
    • /
    • 2019
  • This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

Bacterial core community in soybean rhizosphere (콩 근권의 핵심 세균 군집)

  • Lee, Youngmi;Ahn, Jae-Hyung;Choi, Yu-Mi;Weon, Hang-Yeon;Yoon, Jung-Hoon;Song, Jaekyeong
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2015
  • Soybean is well known to be originated from Korea and far-east Asian countries, and studies of many root nodule bacteria associated with soybean have mainly-focused on nitrogen fixation, but much less study was carried out on bacterial community in the rhizosphere of soybean. In this study, we analyzed the bacterial community in rhizosphere of Korean soybean, Daepungkong using the pyrosequencing method based on the 16S rRNA gene to characterize the change of the rhizosphere community structure according to the growth stages of soybeans and to elucidate bacterial core community in rhizosphere of soybean. Our results revealed that bacterial community of rhizosphere soil differed from that of bulk soil and was composed of a total of 21 bacterial phyla. The predominant phylum in the rhizosphere of soybean was Proteobacteria (36.6-42.5%) and followed by Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), and Firmicutes (5.7-6.3%). The bacterial core community in soybean rhizosphere was mainly composed of the operational taxonomic units (OTUs) belonging to the phylum Proteobacteria throughout all growth stages. The OTU00006 belonged to the genus Bradyrhizobium had the highest abundance and Steroidobacter, Streptomyces, Devosia were followed. These results show that bacterial core community in soybean rhizosphere was mainly composed of OTUs associated with plant growth promotion and nutrient cycles.

Upregulation of Mir-34a in AGS Gastric Cancer Cells by a PLGA-PEG-PLGA Chrysin Nano Formulation

  • Mohammadian, Farideh;Abhari, Alireza;Dariushnejad, Hassan;Zarghami, Faraz;Nikanfar, Alireza;Pilehvar-Soltanahmadi, Yones;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8259-8263
    • /
    • 2016
  • Background: Nano-therapy has the potential to revolutionize cancer therapy. Chrysin, a natural flavonoid, was recently recognized as having important biological roles in chemical defenses and nitrogen fixation, with anti-inflammatory and anti-oxidant effects but the poor water solubility of flavonoids limitstheir bioavailability and biomedical applications. Objective: Chrysin loaded PLGA-PEG-PLGA was assessed for improvement of solubility, drug tolerance and adverse effects and accumulation in a gastric cancer cell line (AGS). Materials and Methods: Chrysin loaded PLGA-PEG copolymers were prepared using the double emulsion method (W/O/W). The morphology and size distributions of the prepared PLGA-PEG nanospheres were investigated by 1H NMR, FT-IR and SEM. The in vitro cytotoxicity of pure and nano-chrysin was tested by MTT assay and miR-34a was measured by real-time PCR. Results: 1H NMR, FT-IR and SEM confirmed the PLGA-PEG structure and chrysin loaded on nanoparticles. The MTT results for different concentrations of chrysin at different times for the treatment of AGS cell line showed IC50 values of 68.2, 56.2 and $42.3{\mu}M$ and 58.2, 44.2, $36.8{\mu}M$ after 24, 48, and 72 hours of treatment, respectively for chrysin itslef and chrysin-loaded nanoparticles. The results of real time PCR showed that expression of miR-34a was upregulated to a greater extent via nano chrysin rather than free chrysin. Conclusions: Our study demonstrates chrysin loaded PLGA-PEG promises a natural and efficient system for anticancer drug delivery to fight gastric cancer.

Nodulation and N2 Fixation in Groundnut as Affected by Inoculation Method (땅콩의 근류형성(根瘤形成)과 질소고정(窒素固定)에 대한 근류균(根瘤菌) 접종방법(接種方法)의 영향(影響))

  • Kim, Moo-Key;So, Jae-Don;Park, Kun-Ho;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 1992
  • Effective strains of cowpea bradyrhizobia JB7 $nal^rspe^r$ and CB756 $str^rrif^r$, antibiotic-resistant variants of JB7 and CB756, respectively, were used to examine changes of rhizosphere populations and nodule occupancy. Populations of each strain increased gradually in the rhizosphere, reaching a maximum of about $10^8$ cells per root system. Nodule number increased as the density of inoculum increased from $10^2$ cells to $10^8$ cells per seed. Inoculation with liquid suspension resulted in the formation of more nodules than the peat slurry or granule inoculation. When JB7 $nal^rspe^r$ and CB756 $str^rrif^r$ were introduced in equal numbers in inoculum mixtures the former consistantly occupied the majority of nodules with all three groundnut cultivars used. There was no difference in yield between nitrogen treatments and inocultation treatments.

  • PDF

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing (차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성)

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Effects of Cutting on Nodule Development and Nitrogen Fixation in Alfalfa (예취가 알팔파 근류의 발달과 질소고정활성에 미치는 영향)

  • Jong Won Ryoo;Ho Jin Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.128-134
    • /
    • 1987
  • This experiment was conducted to evaluate the effects of cutting in field and solution culture. Periodical samplings of alfalfa in cutting and uncutting plots were taken to measure nodule development and nodule activity. Regrowth of plant and nodule development after shoot cutting by different heights and nodule removal at different levels were investigated in solution culture of alfalfa plant. 1. Nodule weight in the field was reduced 30% after the first cutting and 25% after the second cutting, but during the following 30 days after second cutting, there was no significant difference between cutting and uncutting plots. 2. Specific nodule activities of cutting plots at the beginning of June and at the beginning of September were 80% and loo%, higher than those of uncutting plots respectively. Total nodule activities of cutting plots in late August and early September were 40% higher than those of uncutting plot. The decrease of nodule activity can be prevented by cutting at flowering stage. 3. The decrease of nodules in solution culture when 50% of the shoot was cut, was as much as that when shoot was not cut or flower buds were removered. But when 90% of the shoot was cut, the number of the nodules were decreased more remarkably than the above treatments. New nodules, when 90% of the shoot was cut, were reformed slowly and did not grow fully until 15 days after cutting.

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -I. Relationship between Distribution of the Indigenous Rhizobia and Physico-Chemical Properties (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第) 1 보(報). 토착근류균(土着根瘤菌)의 분포상태(分布狀態)와 토양특성(土壤特性)과의 상호관계(相互關係))

  • Ryu, Jin-Chang;Lee, Seong-Jae;Suh, Jang-Sun;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.38-49
    • /
    • 1986
  • In order to improve effectiveness of rhizobia-legume symbiotic nitrogen fixation, ecological and physiological characteristics of indigenous rhizobia distributed in Korea soil, that is, the effects of soybean cultivation, physico-chemical properties and climate on the population of indigenous rhizobia and other soil microbes were investigated. The results were summarized as follows: The population of indigenous rhizobia were ranged from $5.1{\times}10^4$ cells to $196.8{\times}10^4$ cells per gram of soil in soybean cultivated soils but from $1.6{\times}10^4$ cells to $78.6{\times}10^4$ cells per gram of soil in soybean un-cultivated soils sampled from 9 different agro-climate zone. The highest population was observed in a soybean cultivated loamy soil from southern part of Korea. The content of available phosphate, exchangeable Ca, Mg, Cu, and B in soil were positively correlated but active Fe, exchangeable Al, Na, and $SO_4$ were inversely correlated to the population of indigenous rhizobia. The inverse relationship was observed between the number of indigenous rhizobia and actinomycetes.

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -IV. Dissimilartory Nitrate Reduction and Protein Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)IV보(報) 토착대두근류균(土着大豆根瘤菌)의 질산환원(窒酸還元) 및 균체단백질(菌體蛋白質) 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Ju-Yeong;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.275-283
    • /
    • 1987
  • In order to find out the effectiveness of nitrogen fixation in rhizobia-legume symbiotic relationship, ecological and physiological characteristics of indigenous rhizobia distributed in Korean soils, that is, dissimilatory nitrate reduction patterns of indigenous soybean rhizobia isolated from four different soils, and differences in one-and two-dimensional polyacrylamide gel electrophoretic pattern of proteins among the each subgroups of Bradyrhizobium japonicum and Rhizobium fredii, were investigated. The results were summarized as follows: 1. The indigenous soybean rhizobia isolated from four different soils could be classified into 4 groups depending on growth rate and dissimilatory nitrate reduction pattern, that is, $S_1$ (slow-grower; Bradyrhizobium japonicum and nitrate denitrifier), $S_2$ (slow-grower; Bradyrhizobium japonicum and nitrate respirer), $F_1$ (fast-grower; Rhizobium fredii and denitrifier), and $F_2$ (fast-grower; Rhizobium fredii and nitrate respirer). 2. The population ratio of fast- to slow-growing R. japonicum was 39% to 61%, and the ratio of denitrifier to nitrate respirer was 31% to 69% and 89% to 11% in fast and slow-grower, respectively. Some differences were observed between fast- and slow-growing R. japonicum but no significant difference was observed between denitrifier and nitrate respirer within same growth type by one and two dimensional SDS-polyacrylamide gel electrophoretic patterns.

  • PDF

Studies on the Development of Acid Tolerant and Superior Nitrogen Fixation Symbionts for Pasture on Hilly Land -I. The Degrees of Acid Tolerance of Rhizobia from the Pastures in Yeongnam Area (야산(野山) 목초지용(牧草地用) 내산성(耐酸性) 우수(優秀) 질소고정균주(窒素固定菌株) 개발(開發) -I. 영남지방(嶺南地方) 목야지(牧野地) 근류균(根瘤菌)의 내산성정도(耐酸性程度))

  • Kang, Ui-Gwm;Choi, Ju-Hyeon;Cho, Kang-Jin;Jung, Yeun-Tae;Lee, Jae-Saeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.369-374
    • /
    • 1987
  • This study was conducted to evaluate the degree of acid tolerance of indigenous Rhizobium in natural soils, and to select the superior Rhizobia for legume forage on hilly land. 153 Rhizobial strains isolated from two host genera, Medicago and Trifolium in the pastures of Yeongnam area were screened on acidic agar plates. The results obtained are summarized as follows: 1. The degrees of acid tolerance of R. meliloti and R. trifolii were ranged from 4.3 to pH 5.5 and from 4.0 to pH 5.5 respectively. 2. Among acid tolerant Rhizobia isolates, two strains of R. meliloti at pH 4.3 and three strains of R. trifolii at pH 4.0 were shown to have the activities of nodulation and nitrogenase. 3. R. trifolii strains were shown to survive about 80 to 99% at the pH range 4.8 to 5.0, while R. meliloti were about 35 to 47% at that pH range. Therefore, more acid tolerant R. meliloti should be developed for legume forage in Korean hilly land.

  • PDF