• Title/Summary/Keyword: nitrogen regulation

Search Result 161, Processing Time 0.025 seconds

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli

  • Han, Yunlei;Lu, Na;Chen, Qinghua;Zhan, Yuhua;Liu, Wei Liu;Lu, Wei;Zhu, Baoli;Lin, Min;Yang, Zhirong;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1339-1348
    • /
    • 2015
  • Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

A study on the Simultaneous Removal of Nitrogen and Phosphorus on Reactor Configuration in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지 시스템에서 반응조 형태에 따른 질소 및 인의 동시제거 특성에 관한 연구)

  • Lee, Won-Ho;Seo, In-Seok;Kim, Kwang-Yul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • In this research, single-, two- and four-stage intermittently aerated activated sludge system were investigated for simultaneous removal of nitrogen and phosphorus with swine wastewater. For the comparison of removal efficiency, conventional activated sludge system was operated. Operational conditions of intermittently aerated activated sludge system were SRT 20day, HRT 24hr and aeration/nonaeration time 1hr/1hr, respectively. Nitrogen and phosphorus removal efficiency in Intermittently aerated activated sludge system was upgraded compare with conventional activated sludge system. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ was observed very well but, phosphosrus removal in effluent was not effective. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ in first reactor, was observed very well but, in following reactor, $PO_4^{3-}-P$ concentation showed almost no change. T-N removal efficiency in conventional activated sludge system, single-, two-, and four-stage intermittently aerated activated sludge system were 48, 87, 90.9 and 95.5%, respectively, and phosphorus removal efficiency were 48, 75, 97 and 95%, respectively. Intermittently aerated activated sludge system as a alternative processes of conventional system leads to meet satisfactory effleunt with only on/off aeration regulation and save energy for aeration.

  • PDF

Regulation of heavy metal and Growth Adaptation of Meliotus suaveolens Seedlings Treated with Pb (Pb처리에 따른 전동싸리 유식물의 생장적응과 증금속의 조절)

  • 박태규;송승달
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 1998
  • Effects of lead(Pb) and calcium(Ca) on growth responses, accumulation of heavy metals and nitrogen fixation activities of Melilotus suaveolens seedlings were quantitatively analyzed during growing period. Pb contents of the root treated with 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca were 54.1, 90.9 and 26.1 folds higher than that of the control, respectively, at pH 4.2 in 28th days, and heavy metal content of plant increased with increasing of pH and Pb concentration. The melilot plant was classified as a Pb accumulator by higher accumulation of Pb in shoot than that of root. Pb treatments resulted in inhibiton of height and chlorophyll contet, and Ca treatment increased height and chlorophyll content insignificantly at pH 4.2 in 28 days. The plant biomass reduced 49, 60 and 54% at pH 4.2 and 47,53 and 50% at pH 6.5, respectively, by 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca treatment. Specific nitrogen fixation of nodules reduced 68.4% and 46.6% by 100 ppm Pb treatment and 3.7% and 24.9% by 100 ppm Pb added 100 ppm Ca at pH 4.2 and pH 6.5, respectively, so Ca inhibited significantly Pb activity and toxicity in acdic pH. Nodule formation were reduced to 33, 33 and 50% at pH 4.2 and 50, 33 and 38% at pH 6.5 by 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca, respectively.

  • PDF

Cytokinin and Nitrogen-Mediated Gene Regulation for $C_4$ Photosynthesis

  • Sugiyama, Tatsuo;Takei, Kentaroch;Deji, Atsushi;Tanguichi, Mitsutaka;Sakakibara, Hitoshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.50-63
    • /
    • 1996
  • Nitrogen (N) is an important regulator of the expression of genes involved in carbon and N assimilation pathways in plants by selectively altering the levels of proteins and/or mRNAs. These in C4 plants include genes for such as phosphoenolpyruvate carboxylase, carbonic anhydrase, and pyruvate-Pi dikinase. The C4 genes are regulated in mesophyll cells by N availability both transcriptionally and posttranscriptionally through cytokinins and glutamine as signals. The level of both the signals is up-regulated by N availability: cytokinins in roots and glutamine in leaves. The level of glutamine is controlled by the differential expression by N of glutamine synthetase and ferrdoxin-dependent glutamate synthase genes which locate in the mesophyll cells of C4 plants. The results is discussed as molecular mechanism for the greater N use efficiency of the plants as well as N partitioning is the photosynthetic cells.

  • PDF

Multiple Roles of Peroxiredoxins in Inflammation

  • Knoops, Bernard;Argyropoulou, Vasiliki;Becker, Sarah;Ferte, Laura;Kuznetsova, Oksana
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.60-64
    • /
    • 2016
  • Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.

Regulation of extracellular alkaline protease biosynthesis in a strain of streptomyces sp. (Streptomyces sp. 일주에서 균체외 호염기성 단백질분해 효소의 생합성 조절)

  • 신현승;이계준
    • Korean Journal of Microbiology
    • /
    • v.24 no.1
    • /
    • pp.32-37
    • /
    • 1986
  • In fermentation studies it revealed that Streptomyces sp. SMF 3001 started to synthesize extracellular alkaline protease from early exponential phase of cell growth. The biosynthesis of the alkaline protease was greatly induced by skim milk as a sola nitrogen source and further stimulation was observed under inorganic sulphur limited culture. However, it was found that the biosynthesis was apparently repressed by $NH_4^+$ and free amino acids, specially by cysteine. It was considered that the strain SMF 301 of Streptomyces sp. would produce the alkaline protease for the uptake of sulphur compounds from protein contained in the culture broth.

  • PDF

Filamentous growth of Escherichia coli by dephosphorylated NPr (탈인산화된 NPr에 의한 대장균의 섬유상 생장)

  • Choi, Umji;Seok, Yeong-Jae;Lee, Chang-Ro
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.149-155
    • /
    • 2017
  • The nitrogen phosphotransferase (PTS) system is a regulatory cascade present in most Proteobacteria, where it controls different functions. The nitrogen PTS is usually composed of $EI^{Ntr}$ (encoded by the ptsP gene), NPr (encoded by the ptsO gene), and $EIIA^{Ntr}$ (encoded by the ptsN gene). While $EIIA^{Ntr}$ plays a role in a variety of cellular processes, such as potassium homeostasis, regulation of ppGpp accumulation, nitrogen and carbon metabolisms, and regulation of ABC transporters, little information is available for a physiological role of NPr. A recent study showed that dephosphorylated NPr affects adaptation to envelope stresses in Escherichia coli. In this study, we provide another phenotype related to NPr. The ptsP mutant showed a filamentation phenotype. The filamentation phenotype of the ptsP mutant was recovered by additional deletion of the ptsO gene, but not by additional deletion of the ptsN gene, suggesting that an increased level of dephosphorylated NPr in the ptsP mutant renders cells the filamentous growth. This idea was confirmed by the fact that cells with increased levels of dephosphorylated NPr shows the filamentation phenotype. Additionally, we showed that cell size of E. coli increases with incremental dephosphorylated NPr concentrations. These results suggested that dephosphorylated NPr induces morphological change of E. coli.

Analysis of Trans-Acting Elements for Regulation of moc Operons of pTi15955 in Agrobacterium tumefaciens

  • Jung, Won-Hee;Baek, Chang-Ho;Lee, Jeong-Kug;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Two putative regulator genes, mocR and mocS, of the moc (mannityl opine catabolism) operons in pTi15955 of the octopine-/mannityl opine-type Agrobacterium tumefaciens strain 15955, were tested for their possible roles as repressors in the moc operons. The regions upstream of macC and mocD, the first structural genes in the two divergently oriented moc operons, were transcriptionally fused into the promoterless lacZ reporter gene. Each of the lacZ-fusions was introduced into Agrobacterium strain UIA5, a Ti plasmid-cured derivative, harboring either a mocR or a mocS clone. The resulting strains were grown in media containing various sugar sources, and the $\beta$-galactosidase activities were quantitatively measured. The results suggested that MocR repressed the expression of macC and macD. The expression of the fused $\beta$-galactosidase was not induced by mannopine (MOP) or possible catabolic intermediates of the opine, e.g. santhopine (SOP), glucose, mannose, or glutamine. However, the repression was significantly relieved by the supplementation of MOP and the concomitant introduction of the agcA gene encoding MOP cyclase that catalyzes the lactonization of MOP to agropine (AGR). These results suggested that AGR, rather than MOP or the other catabolic intermediates, is the inducer for the expression of the operon. On the contrary to previous report showing that the induction levels of macC and macD were lowered by the supplementation of inorganic nitrogen in media, the expression of these genes was not affected by the level of nitrogen in our reporter system. MocS did not strongly repress the expressions of macC and mocD. It is possible that MocS may be involved in the regulation of the operons present downstream of the moc operon, which are responsible for the utilization of mannopinic acid and agropinic acid.

  • PDF

Long-Term Effects of Growth Regulators and Nitrogen Sources on Proliferation and Turnover of Cell Wall Polysaccharides in Suspension Culture of Kidney Bean (Phaseolus vulgaris L.) (강낭콩의 현탁배양시 증식과 세포벽 다당류 전환에 미치는 생장조절제 및 질소원의 장기간 효과)

  • CHAI, Youn Kyung;KIM, Kyong Ho;YEO, Up Dong;SAKURAI Naoki
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 1998
  • To underatand in vitro regulation of differentiation, the effects of growth regulators and nitrogen source on metabolism of cell wall polysaccharides in suspension culture of kidney bean (Phaseolus vulgaris L.) were investigated. The suspension cells (cell clusters) were directly induced from the epicotyl segments of the seedlings, which were cultivated in MS medium supplemented with 1.0mg/L of 2,4-D and 0.5 mg/L of kinetin. When compared with cell wall sugar contents of the epicotyl segments, the cellulose content of the suspension-cultured cells decreased; while the pectin and hemicellulose content increased; suggesting increases of rhamnogalacturonan I and arabinogalactan IIduring the dedifferentiation, respectively, The effects of growth regulators(2,4-D, 1.0mg/L and kinetin, 0.5mg/L) and nitrogen source (potasium nitrate, 19.0mg/L and ammonium nitrate, 16.5 g/L) in the medium on the proliferation and the turnover of the cell wall polysaccharides were investigated for 30 days. In the medium with growth regulators and without nitrogen source, the proliferation rate was extremely high (16 folds). Growth regulators and nitrogen source increased the pectin content. Analysis of neutral sugar composition of pectin fraction showed that nitrogen source enhanced rhamnose level remarkably, suggesting that rhamnogalacturonan I was the one most likely synthesized. In hemicellulose fraction, growth regulators reduced arabinose level, suggesting that arabinogalactan II was degraded. And nitrogen source reduced galactose level, suggesting that xyloglucan was also degraded.

  • PDF