Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7026

Filamentous growth of Escherichia coli by dephosphorylated NPr  

Choi, Umji (Department of Bioscience and Bioinformatics, Myongji University)
Seok, Yeong-Jae (Department of Biological Sciences and Institute of Microbiology, Seoul National University)
Lee, Chang-Ro (Department of Bioscience and Bioinformatics, Myongji University)
Publication Information
Korean Journal of Microbiology / v.53, no.3, 2017 , pp. 149-155 More about this Journal
Abstract
The nitrogen phosphotransferase (PTS) system is a regulatory cascade present in most Proteobacteria, where it controls different functions. The nitrogen PTS is usually composed of $EI^{Ntr}$ (encoded by the ptsP gene), NPr (encoded by the ptsO gene), and $EIIA^{Ntr}$ (encoded by the ptsN gene). While $EIIA^{Ntr}$ plays a role in a variety of cellular processes, such as potassium homeostasis, regulation of ppGpp accumulation, nitrogen and carbon metabolisms, and regulation of ABC transporters, little information is available for a physiological role of NPr. A recent study showed that dephosphorylated NPr affects adaptation to envelope stresses in Escherichia coli. In this study, we provide another phenotype related to NPr. The ptsP mutant showed a filamentation phenotype. The filamentation phenotype of the ptsP mutant was recovered by additional deletion of the ptsO gene, but not by additional deletion of the ptsN gene, suggesting that an increased level of dephosphorylated NPr in the ptsP mutant renders cells the filamentous growth. This idea was confirmed by the fact that cells with increased levels of dephosphorylated NPr shows the filamentation phenotype. Additionally, we showed that cell size of E. coli increases with incremental dephosphorylated NPr concentrations. These results suggested that dephosphorylated NPr induces morphological change of E. coli.
Keywords
Escherichia coli; filamentous growth; nitrogen PTS; NPr;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, Y.H., Lee, C.R., Choe, M., and Seok, Y.J. 2013. HPr antagonizes the $anti-s^{70}$ activity of Rsd in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 21142-21147.   DOI
2 Park, Y.H., Lee, B.R., Seok, Y.J., and Peterkofsky, A. 2006. In vitro reconstitution of catabolite repression in Escherichia coli. J. Biol. Chem. 281, 6448-6454.   DOI
3 Peterkofsky, A., Wang, G., and Seok, Y.J. 2006. Parallel PTS systems. Arch. Biochem. Biophys. 453, 101-107.   DOI
4 Pfluger-Grau, K. and Gorke, B. 2010. Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol. 18, 205-214.   DOI
5 Postma, P.W., Lengeler, J.W., and Jacobson, G.R. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543-594.
6 Prell, J., Mulley, G., Haufe, F., White, J.P., Williams, A., Karunakaran, R., Downie, J.A., and Poole, P.S. 2012. The $PTS^{Ntr}$ system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol. Microbiol. 84, 117-129.   DOI
7 Rabus, R., Reizer, J., Paulsen, I., and Saier, M.H.Jr. 1999. Enzyme $I^{Ntr}$ from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J. Biol. Chem. 274, 26185-26191.   DOI
8 Rhodius, V.A., Suh, W.C., Nonaka, G., West, J., and Gross, C.A. 2006. Conserved and variable functions of the ${\sigma}^E$ stress response in related genomes. PLoS Biol. 4, e2.
9 Ronneau, S., Petit, K., De Bolle, X., and Hallez, R. 2016. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat. Commun. 7, 11423.   DOI
10 Sperandeo, P., Cescutti, R., Villa, R., Di Benedetto, C., Candia, D., Deho, G., and Polissi, A. 2007. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189, 244-253.   DOI
11 Tanaka, Y., Kimata, K., and Aiba, H. 2000. A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc. EMBO J. 19, 5344-5352.   DOI
12 Velazquez, F., Pflüger, K., Cases, I., De Eugenio, L.I., and de Lorenzo, V. 2007. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J. Bacteriol. 189, 4529-4533.   DOI
13 Deutscher, J., Francke, C., and Postma, P.W. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939-1031.   DOI
14 Wissel, M.C., Wendt, J.L., Mitchell, C.J., and Weiss, D.S. 2005. The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. J. Bacteriol. 187, 320-328.   DOI
15 Yang, D.C., Peters, N.T., Parzych, K.R., Uehara, T., Markovski, M., and Bernhardt, T.G. 2011. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl. Acad. Sci. USA 108, E1052-1060.   DOI
16 Yoo, W., Yoon, H., Seok, Y.J., Lee, C.R., Lee, H.H., and Ryu, S. 2016. Fine-tuning of amino sugar homeostasis by $EIIA^{Ntr}$ in Salmonella Typhimurium. Sci. Rep. 6, 33055.   DOI
17 Chen, J.C. and Beckwith, J. 2001. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42, 395-413.   DOI
18 Choi, J., Shin, D., Yoon, H., Kim, J., Lee, C.R., Kim, M., Seok, Y.J., and Ryu, S. 2010. Salmonella pathogenicity island 2 expression negatively controlled by $EIIA^{Ntr}$-SsrB interaction is required for Salmonella virulence. Proc. Natl. Acad. Sci. USA 107, 20506-20511.   DOI
19 Gopel, Y., Papenfort, K., Reichenbach, B., Vogel, J., and Gorke, B. 2013. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev. 27, 552-564.   DOI
20 Dozot, M., Poncet, S., Nicolas, C., Copin, R., Bouraoui, H., Maze, A., Deutscher, J., De Bolle, X., and Letesson, J.J. 2010. Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS One 5, e12679.   DOI
21 Kim, H.J., Lee, C.R., Kim, M., Peterkofsky, A., and Seok, Y.J. 2011. Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochem. Biophys. Res. Commun. 409, 556-561.   DOI
22 Kaddor, C. and Steinbuchel, A. 2011. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl. Environ. Microbiol. 77, 3582-3590.   DOI
23 Kalamorz, F., Reichenbach, B., Marz, W., Rak, B., and Gorke, B. 2007. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol. Microbiol. 65, 1518-1533.   DOI
24 Karstens, K., Zschiedrich, C.P., Bowien, B., Stulke, J., and Gorke, B. 2014. Phosphotransferase protein $EIIA^{Ntr}$ interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. Microbiology 160, 711-722.   DOI
25 King, N.D. and O'Brian, M.R. 2001. Evidence for direct interaction between enzyme $I^{Ntr}$ and aspartokinase to regulate bacterial oligopeptide transport. J. Biol. Chem. 276, 21311-21316.   DOI
26 Lee, S.J., Boos, W., Bouche, J.P., and Plumbridge, J. 2000. Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J. 19, 5353-5361.   DOI
27 Koo, B.M., Yoon, M.J., Lee, C.R., Nam, T.W., Choe, Y.J., Jaffe, H., Peterkofsky, A., and Seok, Y.J. 2004. A novel fermentation/respiration switch protein regulated by enzyme $IIA^{Glc}$ in Escherichia coli. J. Biol. Chem. 279, 31613-31621.   DOI
28 Luttmann, D., Gopel, Y., and Gorke, B. 2012. The phosphotransferase protein $EIIA^{Ntr}$ modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol. Microbiol. 86, 96-110.   DOI
29 Luttmann, D., Heermann, R., Zimmer, B., Hillmann, A., Rampp, I.S., Jung, K., and Gorke, B. 2009. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein $IIA^{Ntr}$ in Escherichia coli. Mol. Microbiol. 72, 978-994.   DOI
30 Lee, C.R., Cho, S.H., Yoon, M.J., Peterkofsky, A., and Seok, Y.J. 2007. Escherichia coli enzyme $IIA^{Ntr}$ regulates the $K^+$ transporter TrkA. Proc. Natl. Acad. Sci. USA 104, 4124-4129.   DOI
31 Lee, K.J., Jeong, C.S., An, Y.J., Lee, H.J., Park, S.J., Seok, Y.J., Kim, P., Lee, J.H., Lee, K.H., and Cha, S.S. 2011. FrsA functions as a cofactor-independent decarboxylase to control metabolic flux. Nat. Chem. Biol. 7, 434-436.   DOI
32 Lee, J., Park, Y.H., Kim, Y.R., Seok, Y.J., and Lee, C.R. 2015. Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. Microbiology 161, 1113-1123.   DOI
33 Nam, T.W., Cho, S.H., Shin, D., Kim, J.H., Jeong, J.Y., Lee, J.H., Roe, J.H., Peterkofsky, A., Kang, S.O., Ryu, S., et al. 2001. The Escherichia coli glucose transporter enzyme $IICB^{Glc}$ recruits the global repressor Mlc. EMBO J. 20, 491-498.   DOI