• Title/Summary/Keyword: nitrogen ratio

검색결과 2,556건 처리시간 0.033초

Morphological Diversity of Mortierella alpina: Effect of Consumed Carbon to Nitrogen Ratio in Flask Culture

  • Park, Enoch Y.;Yasuhisa Koike;Cai, Hong-Jie;Kenichi Higashiyama;Shigeaki Fujikawa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권3호
    • /
    • pp.161-166
    • /
    • 2001
  • The influence of the consumed carbon to nitrogen (C/N) ratio on mycelial morphology was investigated in cultures of Mortierella alpina using shake flasks. The consumed C/N ratio was varied from 5 to 32 under the condition that the total initial amount of the carbon and nitrogen sources was 50g/L. The whole mycelia and filamentous mycelia exhibited no relationship with the consumed C/N ratio below a consumed C/N ratio of 20 in the presence of either excess carbon or excess nitrogen. However, when the consumed C/N ratio increased higher than 20, the mycelial sizes increased in proportion to the consumed C/N ratio. However, the area ratio of filamentous mycelia to total mycelia was found to be independent of the consumed C/N ratio, and remained constant at 0.82. In the case of a fixed consumed C/N ratio of 20, the whole mycelia and filamentous mycelia increased in proportion to the degree of the medium strength, yet the area ratio of filamentous mycelia to total mycelia remained unchanged at 0.76. Accordingly, these results show that fungal morphology and mycelial size are both affected by the ratio of carbon to nitrogen. The findings of the current study will be helpful in obtaining the efficient production of useful bioproducts from fungal cultures.

  • PDF

Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

  • Cho, Young-Son;Lee, Byong-Zhin;Choe, Zhin-Ryong
    • 한국작물학회지
    • /
    • 제44권2호
    • /
    • pp.102-105
    • /
    • 1999
  • Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

  • PDF

Removal of Inorganic Nitrogen and Phosphorus from Cow s Liquid Manure by Batch Algal Culture

  • KIM, MAM-SOO;MOO-YOUNG PACK
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권3호
    • /
    • pp.214-216
    • /
    • 1993
  • Cow's liquid manure (CLM), an animal waste, was treated by a batch algal culture to remove inorganic nutrients. CLM used in this study was especially high in concentrations of inorganic nitrogen and phosphorus. The optimum dilution ratio of the CLM for maximum algal growth was 1:25. Ninety five percent of inorganic nitrogen and 100% of inorganic phosphorus were removed from the CLM with a dilution ratio of 1:25.

  • PDF

Effect of mixed sowing treatment of green manure crops on the change of soil nitrogen amount and yield production of corn

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Kim, Chung Guk;Lee, Jae Un;Kwon, Young Up
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.318-318
    • /
    • 2017
  • This study was conducted to find optimum mixed sowing ratio of green manure crops to reduce the use of chemical fertilizer as well as to increase the crop yield potential which will foster the utilization of green manure crops in the upland field in view of environment friendly agriculture. According to the study, the mixed ratio, 50:50, of hairy vetch and green barley showed highest nitrogen production yield in the soil due to the relatively higher organic nitrogen supply from the hairy vetch plant as well as nitrogen fixation from the air rather than other mixed ratio. In the 50:50 mixed ratio of hairy vetch and green barely total nitrogen amount in the soil showed 17.2kg per 10a, but in the other treatment ratio such as 75:25, 25:75. total nitrogen fixation amount were 16.7, 16.9 respectively. We also conducted the experiment to compare the effect of the mixed sowing treatment of green manure crops on the production of corn cultivated as a succeeding plant of hairy vetch. According to the result, the mixed ratio, 50:50, of hairy vetch and green barley treatment showed highest yield potential of corn as 153kg per 10a in seed weight which is due to the relatively higher organic nitrogen supply from the hairy vetch plant as well as nitrogen fixation from the air rather than other mixed ratio. In the mixed sowing treatment of hairy vetch 100 and barley 0 ratio, the corn production showed 148kg per 10a which is 5kg lower than that of hairy vetch 50 and barley 50 ratio, but showed statistically no difference between those two treatment. Otherwise, different treatments, such as hairy vetch 75 and barley 25, 25 and 75, 0 and 100 showed statistically different each other. Therefore, it was concluded that green manure crops, such as hairy vetch, green barley and rye were very effective crops to increase the soil fertility and gave the positive effect to the crops to give vegetative and propagative growth condition and, in turn, increased the yield potential. We have to make policy to enhance the utility of green manure crops in the upland crops as well as faddy field for the soil fertility and crop yield production which will guarantee prominent quality of environment friendly agriculture products.

  • PDF

BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향 (Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거 (Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor)

  • 김성홍;이윤희
    • 대한토목학회논문집
    • /
    • 제26권6B호
    • /
    • pp.669-675
    • /
    • 2006
  • SBR반응조를 이용하여 간헐폭기의 슬러지소화 실험을 실시하였다. 폭기비율은 고형물과 질소 제거의 가장 중요한 운전인자 중의 하나였다. 슬러지의 소화에 따라 용출된 유기성질소는 질산성질소로 산화되었고, 생물학적 질소제거율도 높게 나타났는데, 질소제거율은 폭기비율에 따라 달라졌다. 폭기비율 0.25-0.75의 범위에서, 암모니아성 질소의 축적은 보이지 않았으며, pH는 중성에서 유지되었다. 폭기비율을 증가시킴에 따라 고형물 제거율은 증가하지만 용존 질소의 제거율은 감소하는 경향을 보였다. 본 실험에서 SBR 반응조를 이용하고, 평균고형물체류시간 8-32일 정도의 설계조건과 폭기비율 0.25-0.75의 운전 조건에서 VSS 제거율은 17-42% 정도, 용존질소 제거율은 80% 이상이 가능하였다.

The Importance of Nitrogen Release and Denitrification in Sediment to the Nitrogen Budget in Hiroshima Bay

  • KIM Do-Hee;MATSUDA Osamu
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.779-786
    • /
    • 1996
  • The main purpose of this study was to estimate the role of dissolved inorganic nitrogen (DIN) released from sediment and denitrification process in sediment on the nitrogen budget of Hiroshima Bay by means of collecting data on distributions and budgets of nitrogen and phosphorus in the bay, DIN fluxes across sediment-water interface and denitrification rates in the sediments of the same area. The TN : TP and DIN:DIP atomic ratios of the discharged freshwater were about 26 and 21, respectively. The standing stocks in the seawater of the TN : TP atomic ratio varied from 8 to 14 with an annual mean value of 11, while the DIN : DIP atomic ratio varied from 10 to 15 with an annual mean value of 12 in the bay. The residence time of nitrogen and phosphorus were estimated to be about 109 days and 200 days in the bay, respectively. The proportion of DIN released from sediment and denitrification rate to the loading of total nitrogen into Hiroshima Bay were $45\%\;(37\~82\%)\;and\;13\%(0.0\~37\%)$, respectively, and the amount of nitrogen through denitrification process was 6.5 times larger than the outflow of nitrogen from the bay. The results show that DIN released from sediment and denitrification process in sediment play important roles on the nitrogen budget in Hiroshima Bay.

  • PDF

Theoretical Analysis for Nitrogen Removal in Step Feed Oxic-Anoxic-Oxic Process

  • Lee, Byung-Dae;Kim, Il-Chool
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.355-362
    • /
    • 2008
  • One of the popular domestic sewage treatment process (called step feed oxic-anoxic-oxic process) for nitrogen removal was analyzed in this study by theoretical analysis based on the nitrification and denitrification reaction. Total nitrogen removal efficiency was suggested by considering influent qualities(i.e., ammonia, nitrite, nitrate, alkalinity, and COD). Total nitrogen removal efficiency depends on r (influent allocation ratio). In the case that all influent components are enough, the total nitrogen removal follows equation 100-b/(1+b), when r is 1/(1+b). Finally, it can be concluded that step feed oxic-anoxic-oxic process could be effective for nitrogen removal.

미질향상을 위한 간척지 토양 염농도별 적정 질소시비량 (Nitrogen Fertilizer Management for Improving Rice Quality under Different Salinity Conditions in Tidal Reclaimed Area)

  • 최원영;이규성;고종철;박홍규;김상수;김보경;김정곤
    • 한국작물학회지
    • /
    • 제49권3호
    • /
    • pp.194-198
    • /
    • 2004
  • 본 연구는 남서해안 간척지에서 토양 염농도(저염; 0.1%, 중염; 0.3∼0.4%)별로 쌀 품질 향상을 위한 적정 질소 시비량을 구명하기 위하여 시험한 결과를 요약하면 다음과 같다. 1.유추분화기의 초장은 질소 시비량이 많을수록 컸고, 토양염농도간에는 저염 토양에서 켰다. 2. 출수기는 저염 토양에서는 표준비인 N20kg/10a에 비해 N8-N16kg/10a까지는 같았으나 N24kg/10a에서는 1일 늦었고, 중염 토양에서는 N8-N16kg/10a 까지는 1일이 삘랐고 N24kg/10a에서는 같았으며, 토양 염농도간에는 저염 토양에서보다 중염 토양에서 4일 정도 늦었다. 3. 질소시비량이 많을수록 간장이 크고, 포장도복이 심했다. 4. 저염 토양에서 질소시비량이 많을수록 $\textrm{m}^2$ 당 립수는 많았으나 등숙비율이 낮아져 발 수량은 N12kg/10a이상에서는 유의차가 없었으며, N12kg/10a이하에서 현미의 완전미율이 높고 단백질 함량이 낮았다. 5.중염 토양에서는 질소시비량이 많을수록 $\textrm{m}^2$ 당 립수가 많고 등숙비율이 비슷하여 발 수량은 질소시비량이 많을수록 높았으나 N20kg/10a 이상에서는 유의차가 없었고, 현미의 완전미율과 단백질함량은 질소시비량간에 비슷하였다. 따라서 남서해안 간척지에서 쌀 수량 및 미질 등을 고려해 볼 때, 저염 토양에서는 N12kg/10a, 중염 토양에서는 N20kg/10a이 적당할 것으로 생각된다

The Optimum Methionine to Methionine Plus Cystine Ratio for Growing Pigs Determined Using Plasma Urea Nitrogen and Nitrogen Balance

  • Qiao, Shiyan;Piao, Xiangshu;Feng, Zhanyu;Ding, Yuhua;Yue, Longyao;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.434-442
    • /
    • 2008
  • The objective of this study was to determine the optimum ratio of methionine to methionine plus cystine for growing pigs. A nitrogen balance trial was conducted using a total of 21 barrows (Large WhiteLandrace) over two replicates. The initial body weight was $20.36{\pm}1.22kg$ (mean${\pm}$SD) in the first replicate and $23.54{\pm}1.02kg$ (mean${\pm}$SD) in the second. For each replicate, the 21 pigs were randomly assigned to one of seven dietary treatments with three observations per treatment. The diets included a methionine and cystine-deficient basal diet with all other essential nutrients meeting nutrient requirements and six diets formulated with graded levels of DL-methionine (0.00, 0.03, 0.06, 0.10, 0.13, 0.16%) and $L-Cystine{\cdot}HCl{\cdot}H_2O$ (0.19, 0.15, 0.11, 0.07, 0.04, 0.00%). This resulted in ratios of methionine to methionine plus cystine of 41.3, 29.6, 35.3, 41.2, 46.0, 51.6 and 57.5%. Each experimental period lasted 12 days consisting of a seven-day adaptation period followed by a five-day total collection of urine and feces. During the collection period, pigs were fed 900 g/day for the first replicate and 1,200 g/day for the second replicate. The feed was provided in three equal portions at 0800, 1500, and 2200 h daily. Pigs had ad libitum access to water after feeding. There was a linear (p<0.01) and quadratic (p<0.01) effect on daily gain and feed conversion as the ratio of methionine to methionine plus cystine increased. Pigs receiving the diets providing a methionine to methionine plus cystine ratio of 51.6% had the best daily gain and feed conversion. Plasma urea nitrogen was also lowest for this treatment. Nitrogen retention increased (p<0.01) as the relative proportion of methionine increased up to 51.6% and then a downward trend occurred at 57.5%. The quadratic regression model, as well as one- and two- slope regression line models, were used to determine the optimum ratio of methionine to methionine plus cystine. Eliminating the 35.3% methionine to methionine plus cystine treatment resulted in $R^2$ values in excess of 0.92. The optimal ratio of methionine to methionine plus cystine was estimated to be 54.15% for nitrogen retention and 56.72% for plasma urea nitrogen.