• Title/Summary/Keyword: nitrogen ratio

Search Result 2,555, Processing Time 0.034 seconds

Dietary Lysine Requirement of Juvenile Yellowtail Flounder Pleuronectes ferrugineus

  • Kim, Jeong-Dae;Lall, Santosh P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1777-1781
    • /
    • 2003
  • The lysine requirements of juvenile yellowtail flounder (Pleuronectes ferrugineus) having 19.5 g initial body weight were estimated by feeding six practical-type diets containing graded levels of lysine (1.21 to 2.69% of dry diet). Dietary amino acid profile simulated that of whole body of yellowtail flounder. Most of amino acids in the diets were provided by corn gluten meal, herring meal and gelatin. Protein efficiency ratio (PER) improved significantly until lysine level increased up to 2.1% (4.3% of protein). Same trend was observed in feed:gain ratio (FGR) which maintained constant in fish groups fed diets containing lysine above 2.1%. The highest nitrogen gain (0.34 g/fish) in whole body was found in fish fed 2.1% lysine, though the value was not different from those of fish fed above the level of lysine. Fish fed 2.1% lysine also showed the best nitrogen retention efficiency of 24.6%. The broken-line analysis of protein efficiency ratio and body nitrogen gain against dietary lysine level yielded an estimated lysine requirement of 2.2% (4.5% of protein) and 2.3% (4.7% of protein), respectively.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.

Urinary Urea Nitrogen and Creatinine Ratio of School Child -as an indicator of protein intake- (국민학교(國民學校) 아동(兒童)의 단백식이(蛋白食餌) 섭취(攝取) 평가(評價)에 관(關)한 연구(硏究) -요중(尿中) 요소(尿素) 질소(窒素)와 요중(尿中) Creatinine 비(比)에 의(依)한-)

  • Tchai, B.S.;Kim, H.O.
    • Journal of Nutrition and Health
    • /
    • v.5 no.4
    • /
    • pp.151-159
    • /
    • 1972
  • Protein malnutrition of children is one of the most serious nutritional deficiencies in developing country. Urea nitrogen excretion in ureotelic animals is the function most sensitive to dietary protein. The 24 hours excretion of creatinine in the urine of a given subject is remarkably constant from day to day. The creatinine excretion of different individuals of the same age and sex is also quite constant. Low ratios of urinary urea to creatinine are found children low protein intake. The foregiving world-wide investigations indicate that the urea nitrogen/creatinine ratios seems to be a good biochemical indicator to distinguish among group with different levels of protein intake. The purpose of this study is to evluate an indicator of protein intake on the elementary school children ranged from 6 to 8 years of age living in rural and urban areas. Each child measured for height and weight of body. weight measured by means of a plate from scale and height by a vertical measuring rod. Biochemical test were taken from a finger-tip and urine. Hemoglobin level in the blood was measured by cyanomethemoglobin method. From the urine samples, urea nitrogen and urea creatinie were determined by Folin-Wu method and: calculate the ratio. The following result were obtained: 1) Mean of the body weight and height in urban children(Seoul) was higher and heavier than rural children(Kyunggi, Kangwon). And 12% of boys, 18% of girls in Kyunggi and 25% of boys, 22% of girls in Kangwon area weight less than 80% of Korean Physical Standard weight level. 2) The mean hemoglobin values of boys and girls in Seoul are children were 13. 3g/100ml, 13.1g/100ml and the mean of hemoglobin values in Kyunggi 12.9g/100ml of boys, 12.4g/100ml of girls, and 12.4g/100ml of boys, 12.9g/100ml of girls in Kangwon children. It is found that 22% to 24% children inrural area (Kyunggi, Kangwon) had hemoglobin level less than 12g/100ml which means anemia. 3) The mean of hematocrit level of Seoul, boys and girls children were 33.5%, 34.1% and 33.4%, 33.1%, in Kyunggi area and 33.1%, 32.9% in Kangwon area. 4) Urea nitrogen/creatinine ratios in Seoul children were 9. 0, 10. 0 of boys and girls, the ratio were 8.2, 8.0 in Kyunggi boys and girls children, and 7.5 and 7.4 in Kangwon boys, girls children. Low-income rural and upper-income urban background large differences between two groups in the urea nitrogen/creatinine ratio(Seoul: Kangwon in male, female children. p<0.05, p<0.001). The urea nitrogen/creatinine ratio definetly seems to be a good indicator of the quantity of the protein intake. However, whether or not it is an indicator of the quality of the ingested protein ramains to be seen.

  • PDF

Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor

  • Cho, Eun-A;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.210-213
    • /
    • 2014
  • Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoride/melamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specific surface area decreased with an increase in the carbonization temperature. However, the maximum specific capacitance of 208 F/g was obtained at a carbonization temperature of $800^{\circ}C$ because it produced the highest microporosity.

Influence of fresh rice straw application on growth characteristics of tobacco(Nicotiana tabacum L.) (질소 기아현상에 관한 반론적 연구)

  • 이부경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.85-90
    • /
    • 1990
  • Pot experiment was conducted to find out the effect of decomposing degree of rice straw on growth characteristics of flue-cured tobacco, NC82. Tobacco growth was hindered by fresh straw of rice application. Generally, it was known that if organic matter of high Carbon/Nitrogen ratio had applied in soil, there was temporary nitrogen deficiency in plant caused by soil microorganism utilized nitrogen contained organic matter. In pot experiment, it was supposed that tobacco growth hindered by fresh straw of rice application was not nitrogen deficiency by soil microorganism, but gas toxicity by fresh straw of rice application.

  • PDF

Effects of organic matter sources on nitrogen supply potential in arable land (농경지에서 유기물 시용에 의한 질소 공급 효과)

  • Lee, Ye-Jin;Yun, Hong-Bae;Song, Yo-Sung;Lee, Chang-Hoon;Sung, Jwa-Kyung;Ha, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, assessment of nitrogen balance has been required for environmental agriculture. Nutrient management using organic matters in farmlands has been strongly required as a means of extending resource-cycling agriculture and reduction of nitrogen balance. Organic matters-derived nutrients and soil-available nitrogen should be necessarily considered to manage nutrient balance in soil-plant system. In this study, we reviewed the amount of N supply according to types of organic matter such as livestock compost and green manure in arable land. In case of applied livestock compost in soil, nitrogen mineralization was influenced by nitrogen amount of livestock manure and mixed materials. And nitrogen mineralization of green manure in arable land was influenced by types of crop and return period of green manure because of change of C/N ratio. Also, nitrogen supply by organic matter in arable land can be changed by environmental factors such as temperature, moisture in soil. Therefore, nitrogen supply according to C/N ratio of organic matter and analysis method for estimation of soil nitrogen supply availability should be evaluated to set up the nutrient management model.

Effect of Nitrogen Source on Cell Growth and Anthocyanin Production in Callus and Cell Suspension Culture of 'Sheridan' Grapes

  • Kim, Seung-Heui;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • To establish in vitro mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium on cell growth and anthocyanin production were investigated. Total nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium strongly affected anthocyanin production and cell growth. When $NH_4^+$ was fixed, the cell growth was promoted by 50 mM total nitrogen (20 mM $NO_3^-$ : 30 mM $NH_4^+$ ) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. When $NO_3^-$ was fixed, the cell growth was promoted by 70 mM total nitrogen (40 mM $NO_3^-$ : 30 mM $NH_4^+$) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. Cell growth was gradually increased by all nitrogen combinations, but anthocyanin production reached its peak on day 4 in culture. Anthocyanin content increased with decreasing cell density. Sucrose was rapidly hydrolyzed to fructose and glucose within 4 days. Glucose and fructose concentrations in the medium increased and peaked at the 4th day. The anthocyanin content of $NH_4^+$-free 2% sucrose media was 2 times (200 $\mu\textrm{g}$/g) higher than that of 1% sucrose. When $NO_3^-$ was lacking, the highest anthocyanin production was observed at 4% sucrose after 12 days of culture, and increased along with the sucrose concentration.

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate (액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구)

  • Lee, Kyuyeon;Lee, Byung Sun;Shin, Doyun;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.654-659
    • /
    • 2013
  • This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

Elevated Blood Urea Nitrogen/Creatinine Ratio Is Associated with Venous Thromboembolism in Patients with Acute Ischemic Stroke

  • Kim, Hoon;Lee, Kiwon;Choi, Huimahn A.;Samuel, Sophie;Park, Jung Hyn;Jo, Kwang Wook
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.620-626
    • /
    • 2017
  • Objective : Although venous thromboembolism (VTE) is frequently related to dehydration, the impact of dehydration on VTE in acute ischemic stroke (AIS) is not clear. This study investigated whether dehydration, as measured by blood urea nitrogen (BUN)/creatinine (Cr) ratio, influences the occurrence of VTE in patients with AIS. Methods : This is a retrospective study of patients with AIS between January 2012 and December 2013. Patients with newly diagnosed AIS who experienced prolonged hospitalization for at least 4 weeks were included in this study. Results : Of 182 patients included in this study, 17 (9.3%) suffered VTE during the follow-up period; in two cases, VTE was accompanied by deep vein thrombosis and pulmonary embolism. Patients with VTE were more frequently female and had higher National Institutes of Health Stroke Scale (NIHSS) score, more lower limb weakness, and elevated blood urea nitrogen BUN/Cr ratio on admission. In a multivariate analysis, BUN/Cr ratio >15 (odds ratio [OR] 8.75) and severe lower limb weakness (OR 4.38) were independent risk factors for VTE. Conclusion : Dehydration on admission in cases of AIS might be a significant independent risk factor for VTE.

Estimation of Mass Discrimination Factor for a Wide Range of m/z by Argon Artificial Isotope Mixtures and NF3 Gas

  • Min, Deullae;Lee, Jin Bok;Lee, Christopher;Lee, Dong Soo;Kim, Jin Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2403-2409
    • /
    • 2014
  • Absolute isotope ratio is a critical constituent in determination of atomic weight. To measure the absolute isotope ratio using a mass spectrometer, mass discrimination factor, $f_{MD}$, is needed to convert measured isotope ratio to real isotope ratio of gas molecules. If the $f_{MD}$ could be predicted, absolute isotope ratio of a chemical species would be measureable in absence of its enriched isotope pure materials or isotope references. This work employed gravimetrically prepared isotope mixtures of argon (Ar) to obtain $f_{MD}$ at m/z of 40 in the magnetic sector type gas mass spectrometer (gas/MS). Besides, we compare the nitrogen isotope ratio of nitrogen trifluoride ($NF_3$) with that of nitrogen molecule ($N_2$) decomposed from the same $NF_3$ thermally in order to identify the difference of $f_{MD}$ values in extensive m/z region from 28 to 71. Our result shows that $f_{MD}$ at m/z 40 was $-0.044%{\pm}0.017%$ (k = 1) from measurement of Ar artificial isotope mixtures. The $f_{MD}$ difference in the range of m/z from 28 to 71 is observed $-0.12%{\pm}0.14%$ from $NF_3$ and $N_2$. From combination of this work and reported $f_{MD}$ values by another team, IRMM, if $f_{MD}$ of $-0.16%{\pm}0.14%$ is applied to isotope ratio measurement from $N_2$ to $SF_6$, we can determine absolute isotope ratio within relative uncertainty of 0.2 %.