• Title/Summary/Keyword: nitrogen rate

Search Result 3,130, Processing Time 0.029 seconds

Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor (연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구)

  • Kim, Dong-Jin;Kwon, Hyun-Jin;Yoon, Jung-Yee;Cha, Gi-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.

Changes in the Nitrate Assimilation and Ascorbic Acid Content of Spinach Plants Treatmented with Nutrient Solutions Containing High Nitrogen and Low Potassium (고질소 및 저 칼륨 양액처리시 시금치내의 비타민C및 질소 대사의 변화)

  • Park, Yang-Ho;Seo, Beom-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.301-306
    • /
    • 2009
  • This study was conducted to determine the physiological differences betweenhealthy and wilted plants with respect to nitrate assimilation and ascorbic acid content. Wilting was artificially induced in spinach plants by treating the seeds with nutrient solution containing high nitrogen and low potassium. The plants were cultured in different plots 4 types of media: 1N-1P-1K (control), 6N-1P-0K (0K), 6N-1P-0.5K (0.5K), and 6N-1P-2K (2K). The rate of wilting among the plants was as follows: control, 0%; 2K, 10%; 0.5K, 40%; and 0K, 70%. This shows that under high nitrogen conditions, the lower the amount of potassium provided, higher was the rate of wilting. There were no differences in plant growth among the plants treated with different levels of potassium under high nitrogen conditions.The nitrate content in both the leaves and the roots was higher in plants grown under high nitrogen media than those in the control. Furthermore, the nitrate level decreased with increasing potassium concentration. The ascorbic acid content of spinach under high nitrogen conditions was lower than those of the control.

Relationship between some chemical components in the rice plants and varietal reaction to blast disease (도열병 품종저항성과 도체내 성분과의 관계)

  • Baek Soo Bong
    • Korean journal of applied entomology
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 1970
  • An investigation was carried out to know the relationship between resistance of rice varieties to blast disease and the chemical components, especially total nitrogen and total sugars, in the rice plants. The results sic summarized as follow: 1) The nitrogen contents in the resistant variety were less than those of susceptible one, and sugar contents were reversed. Accordingly, the C/N ratio in the resistant variety was higher than that obtained by susceptible one. 2) The free amino acids contents, especially, Glutamine, Valine, Leusine and Iso-leusine, in the resistant varieties were more than those of the susceptible varieties. 3) The starch synthetic activity of rice leaves in the resistant varieties was higher than that of susceptible one in fructose and glucose solutions, but it was reversed in sucrose solution. 4) When more nitrogen was dressed, the total nitrogen content of rice leaves was increased than the ordinary dressing. The rate of increase in nitrogen content in resistant variety was lower than those of the susceptible. The total sugar content of rice plants dressed more nitrogen was decreased at early tillering stage, but increased at maximum tillering stage. It seemed that the rate of increase of total sugar in the resistant variety was higher than those of the susceptible.

  • PDF

Effects of Nitrogen Level and Seedling Number on Panicle Structure in Japonica Rice

  • Kim, Bo-Kyeong;Kim, Ki-Young;Oh, Myung-Kyu;Shin, Mun-Sik;Ko, Jae-Kwon;Lee, Jae-Kil;Kang, Hee-Kyoung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.120-126
    • /
    • 2003
  • Four different rice varieties, Sindongjinbyeo, Dongjin #1, Saegyehwabyeo, and Iksan 467, were transplanted under three different nitrogen levels and two different seedling numbers per hill to obtain basic information on panicle traits under different cultural conditions and to propose the ideal panicle structure in Japonica rice. Sindongjinbyeo and Iksan 467 were characterized by more primary rachis branches (PRBs) per panicle and more grains on PRB than other cultivars. The two varieties also had fewer secondary rachis branches (SRBs) per PRB and fewer grains on SRB per PRB. These characteristics, consequently, resulted in higher ripened grain rate, contrary to that of Dongjin #1 and Saegyehwabyeo. In the correlation coefficient analysis, PRB number per panicle and grain number on PRB per panicle were positively correlated with ripened grain rate, while SRB number per panicle, number of grains on SRB per panicle, SRB number per PRB, number of grains on SRB per PRB and grain number per panicle were negatively correlated with ripened grain rate. Therefore, the number of grains on PRB per panicle, SRB number per PRB and the number of grains on SRB per PRB were the appropriate criteria for determining and achieving higher ripened grain rate in rice. High ripened grain rate over 90% was obtainable with over 12.5 PRBs per panicle and 63 grains on PRB per panicle, and with under 1.7 SRBs per PRB, 5 grains on SRB per PRB, 130 grains per panicle, and 14 panicles per hill. The study recommended that for over 90% high ripened grain rate, the critical limiting factors should be under 2 SRBs per PRB, 6 grains per PRB, and 130 grains per panicle, irrespective of the PRB number per panicle and the number of grains on PRB.

Improvement of Single Anaerobic Reactor for Effective Nitrogen Removal (효율적 질소제거를 위한 단일 혐기성반응조의 개선)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 1997
  • This research aims to remove nitrogen in the piggery wastewater by combined process with upflow anaerobic sludge blanket (UASB) and biofilm process. For the effective denitrification. anaerobic and anoxic reactors were connected to a reactor. The effluent of aerobix reactor was recycled equally with influent in the upper filter of anaerobic reactor for denitrification and outlet of UBF reactor was connected to the settling tank with $1.5{\;}{\ell}$ capacity and the settling sludge was repeatedly recycled to UASB zone. The organic loading rate of total reactor was operated from 0.4 to $3.1kgCOD/m^{3}/d$ and it was observed that the removal rate of TCOD was 80 to 95 percentage. Ammonia nitrogen was removed over 90 percentage in the less volumetric loading rate than $0.1{\;}kgN/m^{3}/d$. But because of non-limitation of organic materials, it was reduced to 70 percentage in the more volumetric loading rate than $0.6{\;}kgN/m^{3}/d$. But denitrification rate was observed 100 percentage in the all of loading rate. This is caused by the maintenance of optimum temperature, sufficient carbon source, and competition of electron acceptors. The results of COD mass balance at the $1.21{\;}kgCOD/m^{3}/d$ was observed with the 71.7% percentage of influent COD. It was revealed that the most part of organic materials was removed in the aerobic and the anaerobic reactor because 38.4 percentage was conversed into $CH_{4}$ gas and 11 percentage was removed in the aerobic reactor with cell synthesis and metabolism. Besides, 5.7% organics was used to denitrification reaction and 3.7% organics related to sulfate reduction.

  • PDF

Using Chlorophyll(SPAD) Meter Reading and Shoot Fresh Weight for Recommending Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice

  • Nguyen, Hung The;Nguyen, Lan The;Yan, Yong-Feng;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Nitrogen management at the panicle initiation stage(PI) should be fine-tuned for securing a concurrent high yield and high quality rice production. For calibration and testing of the recommendation models of N topdressing rates at PI for target grain yield and protein content of rice, three split-split-plot design experiments including five rice cultivars and various N rates were conducted at the experimental farm of Seoul National University, Korea from 2003 to 2005. Data from the first two years of experiments were used to calibrate models to predict grain yield and milled-rice protein content using shoot fresh weight(FW), chlorophyll meter value(SPAD), and the N topdressing rate(Npi) at PI by stepwise multiple regression. The calibrated models explained 85 and 87% of the variation in grain yield and protein content, respectively. The calibrated models were used to recommend Npi for the target protein content of 6.8%, with FW and SPAD measured for each plot in 2005. The recommended N rate treatment was characterized by an average protein content of 6.74%(similar to the target protein content), reduced the coefficient of variation in protein content to 2.5%(compared to 4.6% of the fixed rate treatment), and increased grain yield. In the recommended N rate treatments for the target protein content of 6.8%, grain yield was highly dependent on FW and SPAD at PI. In conclusion, the models for N topdressing rate recommendation at PI were successful under present experimental conditions. However, additional testing under more variable environmental conditions should be performed before universal application of such models.

  • PDF

Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area (인공습지의 농촌지역 오수정화시설에 적용가능성 연구)

  • 윤춘경;권순국;권태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Dietary Evaluation and Protein Catabolic Rate in Maintenance Hemodialysis Patients (혈액투석환자의 식이조사 및 Protein Catabolic Rate에 관한 연구)

  • 장유경
    • Journal of Nutrition and Health
    • /
    • v.25 no.3
    • /
    • pp.256-263
    • /
    • 1992
  • As various metabolic alterations develope in uremic patients. their diets need to be restricted, Furthermore medical complications with accompanying anorexia result in further complications and decrease in body strength. To assess the nutritional status of hemodialyzed patients we performed evaluation for dietary intake and protein catabolic rate(PCR) For 24 clinically stable male patients undergoing maintenance hemodialysis dietary intake was estimated by 3-day food record method and PCR was calculated with blood urea nitrogen at pre and post hemodialysis. The results were as follows : 1) Average daily energy and protein intake were 26.7$\pm$5.1kcal/kg of body weight. 0.95$\pm$0.19 g/kg of body weight respectively. 2) Protein catabolic rate calculated from interdialysis blood urea nitrogen levels was 1.00$\pm$0.20g/kg of body weight. Protein catabolic rate was correlated with the amount of Protein intake(r=0.44 p<0.05) 3) Relative body weight(RBW) of the subjects was smaller than that of healthy man without hemodialysis. Calorie and protein intake and protein catabolic rate were significantly different (p<0.05) between patients with lower RBW(<90% of ideal body weight) and those with normal RBW(90~110% of ideal body weight) and those with normal RBW(90~110% of iedal body weight) 4) The duration of hemodialysis did not have a significant effect on the nutritional status of the subjects.

  • PDF

Effects of Nitrogen Application on Growth and Bioactive Compounds of Chrysanthemum indicum L. (Gamgug) (질소시비가 감국의 생육 및 유효성분에 미치는 영향)

  • Kim, Dong-Kwan;Lee, Kyung-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.363-368
    • /
    • 2009
  • To fulfill the increasing demand for a high quality of flower, we investigated the effects of nitrogen application on plant growth, yield and bioactive compounds of Chrysanthemum indicum L.. C. indicum L. was cultivated in a pot scale, and nitrogen applied with the level of 0 (N0), 50 (N50), 100 (N100), 150 (N150), 200 (N200) and $300\;(N300)\;kg\;ha^{-1}$ to suggest optimum rate of nitrogen fertilization. Phosphate and potassium applied the same amount of $80-80\;kg\;ha^{-1}$ ($P_2O_5-K_2O$) in all treatments. Growth characteristics and yields of C. indicum L. were significantly affected by nitrogen application. Maximum yield achieved in 265 and $295\;kg\;ha^{-1}$ N treatment on the whole plant and the flower parts, respectively. The nitrogen content and uptake of whole plant significantly increased by the increase of nitrogen application. Five major components of essential oil, $\alpha$-pinene, 1,8-cineol, chrysanthenone, germacrene-D, and $\alpha$-curcumene in flowerheads of C. indicum L. occupied approximately 40% of peak area, germacrene-D decreased by the increase of nitrogen application among them. However, cumambrin A contents in the flower parts of C. indicum L. were affected negatively by the increase of nitrogen application, but total yields of cumambrin A in flower part significantly increased. Conclusively, nitrogen fertilization could increase the yield of flowerheads. The optimum application level of nitrogen fertilizer might be on the range of $265-295\;kg\;ha^{-1}$ in a mountainous soil.