• Title/Summary/Keyword: nitrogen fertilizer rate

Search Result 499, Processing Time 0.034 seconds

Diagnosis of the Field-Grown Rice Plant -[1] Diagnostic Criteria by Flag Leaf Analysis- (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -1. 지엽분석(止葉分析)에 의(依)한 진단(診斷)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.18-30
    • /
    • 1973
  • The flag and lower leaves (4th or 5th) of rice plant from the field of NPK simple trial and from three low productive area were analyzed in order to find out certain diagnostic criteria of nutritional status at harvest. 1. Nutrient contents in the leaves from no fertilizer, minus nutrient and fertilizer plots revealed each criterion for induced deficiency (severe deficient case induced by other nutrients), deficiency (below the critical concentration), insufficiency (hidden hunger region), sufficiency (luxuary consumption stage) and excess (harmful or toxic level). 2. Nitrogen contents for the above five status was less than 1.0%, 1.0 to 1.2, 1.2 to 1.6, 1.6 to 1.9 and greater than 1.9, respectively. 3. It was less than 0.3%, 0.3 to 0.4, 0.4 to 0.55 and greater than 0.55 for phosphorus $(P_2O_5)$ but excess level was not clear. 4. It was below 0.5%, 0.5 to 0.9, 0.9 to 1.2, 1.2 to 1.4 and above 1.4 for potassium. 5. It was below 4%, 4 to 6, 6 to 11 and above 11 for silicate $(SiO_2)$ and no excess was appeared. 6. Potassium in flag leaf seemed to crow out nitrogen to ear resulting better growth of ear by the inhibition of overgrowth of flag leaf. 7. Phosphorus accelerated the transport of Mg, Si, Mn and K in this order from lower leaf to flag, and retarded that of Ca and N in this order at flowering while potassium accelerated in the order of Mn, and Ca, and retarded in the order of Mg, Si, P and N at milky stage. 8. Transport acceleration index (TAI) expressed as (F_2L_1-F_1L_2)\;100/F_1L_1$ where F and L stand for other nutrient cotents in flag and lower leaf and subscripts indicate the rate of a nutrient applied, appears to be suitable for the effect of the nutrient on the translocation of others. 9. The content of silicate $(SiO_2)$ in the flag was lower than that of lower leaf in the early season cultivation indicating hinderance in translocation or absorption. It was reverse in the normal season cultivation. 10. The infection rate of Helminthosporium frequently occurred in the potassium deficient field seemed to be related more to silicate and nitrogen content than potassium in the flag leaf. 11. Deficiency of a nutrient occured simultaniously with deficiency of a few other ones. 12. Nutritional disorder under the field condition seems mainly to be attributed to macronutrients and the role of micronutrient appears to be none or secondary.

  • PDF

Growth of Chinese Cabbage Plug Seedlings as Influenced by Various Pre-planting Nitrogen Concentrations in Inert Media (혼합상토에 기비로 혼합된 질소 농도가 배추 플러그묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Lee, Nu Ri;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.616-625
    • /
    • 2016
  • This research was conducted to investigate the optimum level of nitrogen incorporated during formulation of root media as pre-plant fertilizer on the growth of plug seedlings of 'Bool-am No.3' Chinese cabbage. A root medium was formulated by blending peatmoss:coir dust:perlite at a ratio of 3.5:3.5:3.0 (v/v/v). The nitrogen was incorporated in the seven treatments at a rate of 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$ during the root medium formulation. The concentrations of other essential nutrients except nitrogen were controlled to equal in all treatments. Then, the root medium was packed into 72-cell plug trays and seeds were sown. The growth measurements as well as tissue and soil solution analysis for nutrients were conducted 2 and 4 weeks after seed sowing. As seedlings grew, the pH in the extracted solution of all treatments tended to decrease. The decreases in the treatments of high N concentrations were more severe than those with low N, but the differences among treatments were not statistically significant. The differences of EC in extracted solution of root media among treatments were sizable until week 3, but the differences began to lessen and the EC decreased in all treatments after week 4. Growth of the aerial parts of plug seedlings at 2 weeks after sowing were highest in the $100mg{\cdot}L^{-1}$ and lowest in the $1,500mg{\cdot}L^{-1}$ treatments, but those at 4 weeks after sowing were highest in the $500mg{\cdot}L^{-1}$ and lowest in the $0mg{\cdot}L^{-1}$ treatments among all treatments tested. The tissue N content was highest and lowest in the treatments of 250 and $1,000mg{\cdot}L^{-1}$, respectively, when tissues were harvested at 4 weeks after sowing and analysed based on the dry weight of above-ground tissue. The contents of micronutrients were the highest in the 1,000 and $1,500mg{\cdot}L^{-1}$ treatments among all treatments. The results shown above indicate that the $250mg{\cdot}L^{-1}$ of pre-plant N and elevation of post-plant N concentration to above $100mg{\cdot}L^{-1}$ are suitable for raising plug seedlings of Chinese cabbage using inert media.

Effect of Nitrogen Fertilization and Cutting Management on the Carbohydrate Reserves, Regrowth, and Dry Matter Yeild of Sorghum-Sudangrass Hybrid[Sorghum bicolor(L.)Moench] II. Effect of nitrogen fertilization and cutting height on the dead stubble and carbohydrate reserves in stubble of sorghum-sudangrass hybrid (질소시비수준과 예취관리가 수단그라스계 잡종 [Sarghum Bicolor (L.) Moench]의 저장탄수화물함량, 재생 및 수량에 미치는 영향. II. 질소시비수준과 예취높이가 수단그라스계 잡종의 그루터기 고사와 저장탄수화물함량에 미치는 영향)

  • Seo, Sung;Kim, Dong-Am
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1983
  • This experiment was carried out to investigate the effects of the different nitrogen rates and cutting heights on the dead stubble after cutting, and the carbohydrate reserved in stubble of sorghum-sudangrass hybrid (Sorghum bicolor (L.) Moench) Pioneer 988. The experiment was undertaken in the Experimental Livestock Farm of Agriculture Coll., Seoul Nat'l Univ. In Suweon, 1981 and 1982. The results obtained are summarized as follows: 1. The dead stubble after cutting was found to be great with high rate of nitrogen fertilizer and low cutting height. It was also learned that the rainfall during forage cutting period made the dead stubble increased. 2. A significant higher (p<0.05) carbohydrate reserves in the stubble was observed in the high stubble height at the first cutting time and 6th through 7th day after the first cutting. The results indicate that the high stubble height reserves more carbohydrate for the early regrwoth stage after the first cutting when comparing with the low stubble. 3. The content of carbohydrate reserves was influenced by climete. Drought is caused to high content of carbohydrate, whereas, rain is caused to low content of that. The critical soluble carbohydrate content causing the death of stubble supposed to be 3 to 6% at least. 4. It is suggest that carbohydrate reserves in plant do not play a distinctive role for the regrowth in a summer annual forage like sorghum-sudangrass hybrid, but it might be rather influenced by the other factors, for example, environmental conditions at harvest and new bud.

  • PDF

Growth, Rice Yield and Edible Quality of Rice under Naturally Reseeded Chinese Milk Vetch Cropping System (자운영 지속재배시 벼 생육, 수량 및 미질)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Hwang, Woon-Ha;Choi, Kyung-Jin;Park, Sung-Tae;Kim, Jeong-Il;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • Growth, milled rice yield and edible quality of rice in naturally reseeded Chinese milk vetch(CMV)-rice cropping system was compared with those in rice mono cropping on silty loam soil in Milyang from 2006-2008. Practicing natural reseeding technology recorded high CMV reseeding stand ranging from 565-805 plants $m^{-2}$ and resulting in the production of 13.0-17.0 kg N/10a from the CMV plant biomass which is greater than the recommendation rate of 9 kgN/10a. The plant height of rice plant grown in natural reseeding field is shorter at tillering stage but it was similar to the rice mono cropping at later stage. Dry matter production had similar trend to plant height. On the other hand, the leaf color in naturally reseeded CMV-rice cropping system was similar to the rice mono cropping up to panicle heading stage but it was high at mature stage, indicating that the nitrogen was provided by the CMV decomposition until later stage of rice. The yield components such as culm number $m^{-2}$ was greater and 1,000-brown rice weight was heavier than those of rice mono cropping but the ripened grain ratio was lower in naturally reseeded CMV-rice cropping system. Milled rice yield of naturally reseeded CMV-rice cropping system was similar to that of rice mono cropping. However, head rice percentage of milled rice was lower due to low ripened grain ratio. This result indicates that natural CMV reseeding technology can completely replace chemical fertilizer in CMV-rice cropping system.

A Study on Changes of Physico-Chemical Properties of Plow Layer Soil and its Response of Tobacco Growth under Polyethylene Film Mulching Condition -3. Effect of Poly Ethylene Film Mulch on the Growth and Nutrients Uptake of Tobacco Plant (연초피복재배(煙草被覆栽培)에서 작토시(作土尸)의 이화학성(理化學性) 변화(變化)와 연초생장반응(煙草生長反應)에 관(關)한 연구(硏究) -3. 피복조건(被覆條件)이 연초생장(煙草生長)과 양분흡수(養分吸收)에 미치는 영향(影響))

  • Hong, Soon Dal;Lee, Yun Hwan;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.312-317
    • /
    • 1985
  • Growth response and nutrients uptake of tobacco grown on mulched and non mulched plots were investigated during the growing period. 1. The whole growing time was about 25 days shorter and relative growth rate was faster in the mulched plot than in the non mulched plot. 2. Nitrate content of leaf in the latter stage of tobacco grown on the non mulched plot was more continuously increased compared with mulched plot. As a result in the latter stage of tobacco leaf nitrate form of nitrogen level was much higher on non mulched plot than on mulched plot. 3. Reducing sugar content in cured leaves of tobacco grown on the non mulched plot was lower that of the mulched plot. This difference in reducing sugar content was remarkable in the bottom leaves that nitrate content was highest. 4. Tobacco growing on nonmulched soil may cause to be low quality owing to increasing of nitrogen compound and decreasing of reducing sugar content in cured leaves. 5. As distributions of nitrate and potassium content in leaves at different stalk position was similar each other, nitrate and potassium ion considered to be counter ion in absorption and translocation through the tobacco plant.

  • PDF

Change of Nutrition Loss of Long-term Application with Different Organic Material Sources in Upland Soil (유기물원이 다른 퇴비연용 밭토양에서 양분유실량 변화)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Kim, Jae-Duk;Han, Sang-Su;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.432-445
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of nutrition loss in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The loss of nutrients in the form of cation and anion by run-off water increased with the increase of compost application rate. Compared with bare soils, maize cultivation decreased the nutrient loss by run-off from soils by 43% in anionic form and 32% in cationic form. Amount of cation loss were ordered $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ > $NH_4{^+} $ and that of anion loss were ordered $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^-$ > $PO_4{^{3-}}$. Nutrient loss of sand loam soil in the cation and anion by percolation water increased 1.7 times compared with loam soil. $NO_3{^-}-N$ contents in percolated water were high at the initial stage after compost application, and the amounts were higher in sandy loam soil than loam soil. The maize cultivation also decreased the $NO_3{^-}-N$ contents in percolated water by 82% in loam soil, and 58% in sand loam soil. Soil pH of composts determined by laboratory incubation test increased pH 6.1~6.8 application with poultry and cow manure compost but application with human excrement sludge decreased pH 4.5~4.7. Soil EC were increased initially composts application and decreased up to 2 weeks, thereafter kept a certain level. Nitrogen mineralization rates of composts determined by laboratory incubation test at $25^{\circ}C$ were 39~76% in sandy loam soil, and 16~48% in clay loam soil.

  • PDF

Effect of Methanol on the Behavior of Urea-N Applied to the Soil Surface under Submerged Condition (담수조건에서 토양의 표면에 시용된 요소태 질소의 행동에 미치는 Methanol의 영향)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 1997
  • The effect of easily decomposable organic carbon (methanol) application on the behavior of nitrogen derived from surface-applied urea in submerged soil was investigated. Two rates of urea (150 & $300kg-N\;ha^{-1}$) and three levels of methanol (2, 4, 8 ml) were applied to 10 g soil samples. The samples were incubated for 30 days under submerged conditions. The flood water and the soil were sampled for analysis of urea-N, $NH_4-N$ and $NO_3-N$ every 10 days. Urea-N in flood water and in soil at the rate of $150kg-N\;ha^{-1}$ and that in flood water at the rate of $300kg-N\;ha^{-1}$ were not detected but the urea-N concentration in soil at the rate of $300kg-N\;ha^{-1}$ with 8 ml methanol treatment was 4.7 on the 10th day from incubation. $NH_4-N$ concentrations in flood water and in soil increased with increasing urea application rates whereas they decreased with increasing methanol treatment. $NO_3-N$ concentration in flood water and in soil were similar regardless of the urea and methanol application rates. The total amount of $NH_4-N$ in flood water and in soil decreased with increasing methanol treatment, 0 ml & 2 ml, whereas the total amounts of $NO_3-N$ in both flood water and soil increased slightly at higher rates of methanol treatment, 4 ml & 8 ml. The total amount of $NH_4-N$ in both flood water and soil increased up to 20 days of incubation whereas that of $NO_3-N$ in flood water and in soil decreased over incubation time.

  • PDF

Influence of Soil Temperature on Growth and Nodulation Competition of Bradyrhizobium sp. Strains in the Rhizosphere of Peanut (온도(溫度)가 땅콩근류균(根瘤菌)의 근류형성(根瘤形成) 경합(競合)에 미치는 영향(影響))

  • Lee, Sand-Bok;Choi, Youn-Hee;So, Jae-Don;Kim, Moo-Key
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.197-203
    • /
    • 1993
  • Greenhouse experiments were conducted to avaluate strain competition, nodulation, patterns of nodule occupancy and population changes of Bradyrhizobium sp. strain HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$ in the rhizosphere of peanut(Arachis hypogaea L.) under different root temperatures. Inoculated with two strains using seed coating with peat slurry under different root temperatures, population of each strain in the rhizosphere increased with plant growth and multiplication rate of inoculum in the unit weight of root were showed the highest from 10 to 15days after sowing. The multiplication rate of inoculum in the rhizosphere was $28^{\circ}C$>$34^{\circ}C$>$22^{\circ}C$. The density of HCR-46 $str^{r}cep^{r}$ was more increased than that of CB756 $str^{r}rif^{r}$ under $22^{\circ}C$ and $28^{\circ}C$. While the density of two strains showed no difference under $34^{\circ}C$. Inoculated with HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, respectively at 22, 28 and $34^{\circ}C$, nodulation of each strain was dominated in its inoculation portion. Inoculated with the mixture of HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, occupancy rate of HCR-46 $str^{r}cep^{r}$ was dominated over that of CB756 $str^{r}rif^{r}$ at $22^{\circ}C$ and $28^{\circ}C$, but that was similar between them at $34^{\circ}C$. Dry mass, nodulation, nitrogen content per plant and nitrogenase activity showed higher at $28^{\circ}C$ than at $32^{\circ}C$ and $22^{\circ}C$, while those were higher in HCR-46 $str^{r}cep^{r}$ and mixing HCR-46 $str^{r}cep^{r}$ with CB756 $str^{r}rif^{r}$ than in CB756 $str^{r}rif^{r}$.

  • PDF

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Evaluation of Livestock Manure Utilization Rates as Agricultural Purpose in Developed OECD Countries by Using Nutrient Balances (OECD 양분수지를 이용한 축산선진국의 농경지 축산분뇨 이용실태 평가)

  • Kim, Pil-Joo;Lee, Yong-Bok;Lee, Youn;Yun, Hong-Bae;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.337-342
    • /
    • 2008
  • The nitrogen (N) and phosphorus (P) balances in Korea during 1985-2006, which calculated according to the surface balance method of the PARCOM guidelines, continually increased with the lapse of year, and then might keep the highest levels with about $250kg\;N\;ha^{-1}$ and $50kg\;P\;ha^{-1}$ in 2006 among OECD countries. National phosphorus balance of the developed OECD countries (Belgium, Denmark, Germany, The Netherlands) in the livestock feeding industries has significantly decreased, due to limit livestock feeding density and nutrient application level by using strong legislation. However, Korean P balance was not apparent decrease, since the number of livestock feeding heads has been increasing, irrespective with the decrease of chemical fertilizer consumption. Manure P portion to the total P input amount of the above four OECD Countries in nutrient balance has continuously inclined to 60-70%. Therefore, the large portion of livestock manure might be used as nutrient source in agricultural side in these countries. In particular, manure P application levels of Belgium and The Netherlands, which have relatively high P balance and manure P portion to total P input dose, was estimated to be $31-33\;kg\;p\;ha^{-1}$ in 2004, and it was similar level with that of Korea in 2006. The manure P application levels for agricultural purpose has continuously decreased in these two OECD countries. In contrast, our manure P application rate continuously increased, and therefore we need the strong political countermeasure to control livestock feeding density at the resonable level.