• Title/Summary/Keyword: nitrogen fertilizer rate

Search Result 499, Processing Time 0.025 seconds

Dry Matter Digestion Kinetics of Two Varieties of Barley Grain Sown with Different Seeding and Nitrogen Fertilization Rates in Four Different Sites Across Canada

  • Cleary, L.J.;Van Herk, F.;Gibb, D.J.;McAllister, T.A.;Chaves, A.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.965-973
    • /
    • 2011
  • Our objective was to determine the differences in the rate and extent of dry matter digestion between barley subjected to differing agronomic variables. Two malting barley varieties, Copeland and Metcalfe were seeded at rates of 200 and 400 plants/$m^2$. Each of these varieties received nitrogen fertilizer at rates of 0, 30, 60 and 120 kg/ha, resulting in a total of 20 different barley grain samples. Samples were ground through a 6mm screen and approximately 3 g of each weighed into 50 ${\mu}m$ Dacron bags and sealed. The bags were incubated in three ruminally cannulated Holstein cattle for periods of 0, 3, 6 and 24 h. Using the data obtained from these incubations, rates of digestion were able to be predicted. The soluble fraction ranged from 0.229-0.327, the slowly degradable fraction ranged from 0.461-0.656, and the undegradable fraction ranged from 0.038-0.299. The rates of digestion ranged from 0.127-0.165 $h^{-1}$ and the effective degradability ranged from 0.527-0.757. At the Canora location, the Copeland samples which received 120 kg/ha of nitrogen fertilizer had a significantly lower (p = 0.013) soluble fraction than the rest of the samples at that location. A significant interaction (p = 0.009) was seen between the seeding rate and nitrogen fertilizer application with samples from the Canora location, as well as significant differences (p = 0.029) between nitrogen application rates in samples from the Indian head location. The rate of digestion of samples from the Indian head location differed (p = 0.020) between the two seeding rates, with samples seeded at 200 seed/$m^2$ having a slightly higher rate of degradation. Differences in the effective degradability were seen between the different nitrogen application rates with samples from both the Canora and Indian head locations, as well as an (p = 0.004) interaction between the seeding rate and nitrogen fertilizer application rate. Although there was not a clear correlation between the different variables, both nitrogen application and seeding rate did have a significant effect on the rates and extent of digestion across each of the four locations.

Slow Release Fertilizer Decreases Leaching Loss of Nitrogen in Sand-based Root Zone (완효성비료의 모래식재지반에 있어서 질소용탈의 감소)

  • Chen, Wei-Feng;Wei, Wang;Ying-Jie, Qi
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.177-182
    • /
    • 2007
  • When a football field is constructed using sand medium, the fertilizer management has to be adjusted because of the low nutrient holding capacity and higher leaching rate. The objective of this study was to test the effects of slow release fertilizers on Kentucky bluegrass (Poa pratensis L.) growth in simulated sport field rootzones with PVC pipe pots. Data of turfgrass color, uniformity, growth rate, biomass above ground, and the nitrate content in the leaching solution was collected at different growing stages and during four simulated rain fall periods. The result showed that the nutrient release rate of urea was the highest and that of controlled release nitrogen fertilizer was the lowest. Effects of the controlled release nitrogen fertilizer lasted 14 days more than other lawn fertilizers and 28 days longer than regular urea with acceptable quality levels of turf. The slow release fertilizer also restrained excessive growth of the grass, reduced the times of mowing. Slow release fertilizer used in this study reduced $NO_3$-N leaching by almost 50% at the beginning of turf establishment.

Effect of Seeding Methods and Nitrogen Fertilizer Rates on the Forage Quality and Productivity of Whole Crop Rice (파종방법 및 질소시비량이 총체 벼의 수량 및 사료가치에 미치는 영향)

  • Kim, Jong Geun;Park, Hyung Soo;Lee, Sang Hoon;Jung, Jeong Sung;Ko, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • This experiment was conducted to evaluate the effect of seeding methods and application levels of nitrogen fertilizer on the yield and forage quality of whole crop rice (WCR). The WCR variety "Namil" was directly seeded on April 25 and transplanted on May 25. Five levels of nitrogen fertilizer were applied (90, 110, 140, 170 and 200 kg/ha). There were no significant differences (p<0.05) of the emergence date, heading date and disease resistance based on the nitrogen fertilizer rates; however, the WCR became dark at higher nitrogen fertilizer rates. The plant height increased at higher nitrogen fertilizer rates and the tiller number showed the same trend. In contrast to a direct seeding method, transplanting increased the tiller number. The dry matter (DM) content did not show a certain tendency based on nitrogen fertilizer rates, while the fresh and dry matter yields increased with incremental changes of the nitrogen fertilizer rates (p<0.01), and the transplant method increased the yield size. In yield analysis, the plot direct-seeded with 140 kg N/ha and the transplanting with 170kg N/ha showed the highest yields. The crude protein (CP) content increased with higher nitrogen fertilizer rate, but there was no significant differences between transplant and direct-seeding methods. The content of ADF (acid detergent fiber) and NDF (neutral detergent fiber) increased with higher nitrogen fertilizer rate, but total digestible nutrient (TDN) content decreased with increased nitrogen levels. Although high nitrogen applications increased the fresh and DM yields, the 140 kg/ha nitrogen fertilizer level is recommended as the proper nitrogen fertilizer level, considering both yield and the environments.

Input and Output Budgets for Nitrogen of Paddy Field in South Korea

  • Jung, Goo-Bok;Hong, Seung-Chang;Kim, Min-Kyeong;Kim, Myung-Hyun;Choi, Soon-Kun;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • The main objective of this research was to estimate the total mass of nitrogen discharged from various sources in paddy field area of South Korea in 2010 and 2013. Input and output budgets for nitrogen were estimated by mass balance approach. The mass balance approach reduces the effect of flow variations, and the large scale approach minimizes local effects, resulting in easier and faster establishment of strategy for nonpoint pollution problems. Nitrogen inputs were chemical fertilizer, compost, atmospheric deposition, biological fixation, and agricultural water, while crop uptake, denitrification, volatilization, and infiltration were nitrogen outputs. The estimated total nitrogen inputs for paddy field in South Korea were $266,211ton\;yr^{-1}$, $260,729ton\;yr^{-1}$, while those of total nitrogen outputs were $168,463ton\;yr^{-1}$, $164,994ton\;yr^{-1}$ in 2010 and 2013, respectively. Annual amounts of potential nitrogen outflow from paddy field were $97,748ton\;yr^{-1}$, $95,735ton\;yr^{-1}$ in 2010 and 2013. Also, annual rate of potential nitrogen outflow were 36.7%, 36.7% in 2010 and 2013, respectively.

A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor (Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구)

  • Seo Jong-Hwan;Lee Chul-Seung
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

Field Variability and Variable Rate Fertilization of Nitrogen in a Direct Seeding Paddy for Precision Agriculture (정밀 농업을 위한 직파 벼 재배 논에서 포장 변이성 조사와 질소의 변량 시비)

  • Jung, Yeong-Sang;Lee, Ho Jin;Chung, Ji-Hoon;Park, Jeong-Geun;Kang, Chang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.202-210
    • /
    • 2005
  • Since understanding on spatial variability of a field is essential to pursue precision agricultural technology, a field study for field variability and variable rate fertilization of nitrogen in a direct seeding paddy was attempted. Variable rate application of nitrogen was designed with soil test, and field application was tested in a direct seeding paddy in the Kimje, Jeonbuk, Korea. The grid samples of soil was collected from the field of which unit size was 35 m by 112 m on February before irrigating of the field. Soil organic matter, available phosphate and silicate, and extractable potassium were analyzed. Variable rate fertilizer recommendation maps of nitrogen for high yielding, HY, and low input sustainable agriculture, LISA, were derived based on the soil analysis. Direct seeding of rice was performed for variable rate treatment, VRT, for the experimental plot in 2001 and 2002, and so did for three volunteer farmers' field in 2003. Yield mapping was performed by harvesting. Economic feasibility of direct seeding of rice by variable rate fertilization was evaluated. Though increased yield of variable rate application and benefit of reducing fertilizer use and environmental impact, the cost for soil test exceeded the total reduced fertilizer cost.

Influence of Fertilizer Application Rate and Number of Harvested Leaves on Selected Agronomic, Chemical and Physical Characteristics of Burley Tobacco(Nicotiana tabacum L.) (버어리종 담배의 시비량과 수확엽수 조절이 농경 및 이화학적 특성에 미치는 영향)

  • 임해건;조천준;김대송;한철수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.66-70
    • /
    • 1991
  • A field experiment was conducted to study the effects of fertilizer application rate and number of harvested leaves per plant on selected agronomic, chemical and physical characteristics of burley tobacco(Nicotiana tabacum L. cv Burley 21) in 1988, 1989 and 1990 at Chonju Experiment Station, Korea Ginseng SE Tobacco Research Institute. 175.0 or 227.5 kilogram per 10a of compound fertilizer(N-P2O5-K2O= 10-10-20) were applied as main plot, and 2 or 4 of upper leaves was topped off with 0, 2 or 4 of the lower leaves removed as sub plot. Yield, total alkaloid and total nitrogen content of cured leaves were high in the higher level of compound fertilizer plot, and increasing the level of compound fertilizer had an adverse effect on physical characteristics. Reducing the number of harvested leaves had a negative effect on yield regardless of whether the leaf number was reduced by lower topping or removing the bottom leaves, but increased the rate of higher grades leaves. Differences in total alkaloid, total nitrogen and some physical properties among number of harvested leaf per plant were smaller than expected.

  • PDF

Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors

  • Kang, Seong Soo;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.

Effect of Nitrogen Fertilization on Maturity of leaves and Chemical Contents of Burley Tobacco (질소시비량이 버어리종엽의 성숙과 내용성분에 미치는 영향)

  • 배성국;추홍구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.347-352
    • /
    • 1987
  • This studies were carried out to investigate the effects of nitrogen fertilizer rates and methods of its application on maturity of leaves, total nitrogen and total alkaloids concentration in burley tobacco leaves. Nitrogen rate ranged from 17.5 to 40.5kg/10a and applied through basic fertilization and sidedressing. The filling capacity of cured leaves was decreased with increasing levels of nitrogen fertilizer. As the rate of nitrogen fertilization was increased or sidedressing, the maturity of leaves was delayed and total alkaloids and total nitrogen concentration were increased. Total alkaloids concentration in leaves was gradually increased, especially more in upper leaves from 60 to no days after tratnsplanting, but total nitrogen concentration was decreased.

  • PDF

Effect of Fertilizer Levels on Growth Characters, Dry Matter Yield and Nutrient Quality of Forage Rape in Spring Sowing

  • Kwon, Byung-Sun;Shin, Jeong-Sik;Shin, Dong-Young;Hyun, Kyu-Hwan;Park, Hee-Jin;Sin, Jong-Sup;Seong-Kyu
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • To find out the optimum fertilizer level for high yielding variety, Velox, experiment was conducted with 15 compositions of fertilizer levels at the experiment field of forage crop in Sunchon National University from Mar. 2000 to Aug. 2000. The effects of nitrogen fertilizer on plant growth were significant but increasing rate of application in potassium and phosphate fertilizers above 6 kg/a had negligible effects on plant growth. The optimum nitrogen application level of fertilizers turned out to be 16-6-6 kg/l0a of N-P$_2$O$_{5}$-K$_{5}$O. Content of crude protein was highest and that of crude fiber such as NDF, ADF, cellulose and lignin were lowest at this rate of fertilizer application. Furthermore, IVDMD was high and dry matter yield were highest at the optimum raterate

  • PDF