• Title/Summary/Keyword: nitrogen fertilization method

Search Result 73, Processing Time 0.03 seconds

Evaluation of Growth and Yield When Harvesting Italian Ryegrass Transplanted After Cultivation of Paddy Rice

  • Hyeonsoo Jang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.167-167
    • /
    • 2022
  • Seed production of italian ryegrass has a problem of lodging during ripening and a decrease in quality due to difficulty in drying seeds during harvest. Therefore, in order to produce high-quality Italian ryegrass in paddy fields, it was carried out to reduce the density and solve the lodging problem through transplanting. In this experiment, Lolium multiflorum cv. Kowinearly was transplanted in autumn from a paddy field in Sindong-ri, Gwansan-eup, Jangheung-gun, Jeollanam-do. var. Kowinearly was made into a bed at 90 g/box and stacked in boxes. It was transplanted on October 27th after 2 days of germination at 30℃ and 15 days of seedling and greening. When transplanting, they were transplanted at intervals of 30×14cm. The existing cultivation method, drill seedling, was sowed at a level of 50 kg/ha, and both transplanting and drilling were carried out at a nitrogen fertilization rate of 45 kg/ha. The number of ears during transplant cultivation was 1,016/m2 and the drilling tended to be higher at 2,278/m2, but this was probably due to the difference in seeding amount. The seed number of an ear tended to be 56% higher in transplantation, which had a significant impact on yield. The seed yield was 2,096 ka/ha in transplantation, which was 21% higher than that of drilling. When looking at the relationship with weed occurrence, there were areas where all the weeds, such as amul foxtail, occurred due to the low density. Even in the same transplanting area, the seed yield was about 1,000kg/ha less in the area where the weeds were abundant. It seems that weed management is important in paddy cultivation. Therefore, it seems necessary to develop an exclusive herbicide for Italian ryegrass cultivation.

  • PDF

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Development of Optimal Seed Production Methods Using Domestic Rye Cultivar in Central and North Area of Korea (중·북부지역에서 국내육성 호밀품종의 채종방법)

  • Han, Ouk-Kyu;Song, Ju-Hee;Ku, Ja-Hwan;Kim, Dea-Wook;Kwon, Young-Up;Lee, Yu-Young;Park, Chang-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.44-52
    • /
    • 2018
  • This experiment was conducted at Suwon, Korea from 2013 to 2015. The objective of this study was to establish the optimum seeding rate, and to clarify the nitrogen fertilizer level for rye seed production in central and north area of Korea. We used Korean rye cultivar 'Gogu' for this test. We employed a split-plot design with three replications. The main plots were designed by three seeding levels (3, 5 and $7kg\;10a^{-1}$), but other sub-plots were randomly seeded. The plots were treated with three different nitrogen fertilizer levels (3, 6 and $9kg\;10a^{-1}$). The percentage of productive tiller, number of grain per spike, fertility rate, 1 liter weight, and 1000-grain weight decreased as seeding rate increased from $3kg\;10a^{-1}$ to $7kg\;10a^{-1}$, whereas the number of spike per $m^2$ increased. Therefore the grain yields of rye had less of an effect by increasing seeding rate. There was an increase in number of spike per $m^2$, number of grain per spike, and fertility rate as nitrogen fertilizer level increased from $3kg\;10a^{-1}$ to $9kg\;10a^{-1}$, but grain yields significantly not affected by the interaction of seeding rate ${\times}$ nitrogen fertilizer levels. However, the best seeding rate and nitrogen fertilizer level for rye seed production were 5 kg and $5{\sim}6kg\;10a^{-1}$, respectively, considering seed and fertilizer reduction and the prevention of pollution by excess fertilization.

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Studies on Direct Sowing-Dry Paddy Rice Culture in the Middle Part of Korea (중부지방에 있어서의 수도건답직파재배 기술체계확립에 관한 시험연구)

  • Jai-Hyoun Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.1-29
    • /
    • 1969
  • Experiments on rice concerning it s varieties, fertilization, seedling dates and herbicides have been conducted to determine the most desirable method of direct sowing cultivation on dry paddy field land in the middle part of Korea. The results obtained at the Office of Rural Development of Choongnam Province are as follows:. 1. Sixteen different derivatives from the main varieties of low land rice were cultivated on a dry paddy field by the direct sowing method; at the same time, a few varieties were tried adopting the common transplanting cultivation method. The yield and yield factors from these two groups were examined to give the following results: a) Compared to the common transplanting cultivation, the direct sowing method showed remarkably increased number of panicles while the number of flowers per panicle was shown to be significantly decreased. The maturing ratio was detected to be lowered. The yield horn them differed according to the different varieties : good yield was obtained from Hokwang while Norin #25 proved poor when compared with the common transplanting cultivation method. b) Among sixteen varieties tested, Sunsou, Norin #25, Jaigou, Hokwang, Palkueng and Gosi showed comparatively high yields, their yield being more than 325 kilograms per 10 Are, but Nampoong, Paldal, Nongkwang, Norin #29, Eunbangju #101 and Shiro gane showed less yield, their yield being less than 271 kilograms per 10 Are, the relations between the yield and the yield factors can be summarized as follows; Number of varieties and their rice yield. 1) The varieties which were great in the, number of panicles and high in yield=Jaigoun, Hokwang Palkueng and Gosi. 2) The varieties which were low in the number of panicles and high in yield=Sounsou and Norin #25. 3) The varieties which were great in the number of panicles and poor in yield=Eunbangju #101 and Sirogane. 4) The varieties which were poor in the number of panicles and poor in yield: Nampung, Paldal and Norin #29. Number of flowers per panicle and yield. 1) The varieties which were great in the number of flowers per panicle and high in yield: Sounsou, Norin #25 and Gosi. 2) The varieties which were poor in the number of flowers per panicle and high in yield ; Jaigoun, Hokwang and Palkueng. 3) The varieties which were great in the number of flowers per panicle and poor in yield: Paldal and Nampung. 4) The varieties which were poor in the number of flowers per panicle and poor in yield: Norin #29. Eunbangju #101 and Sirogane. Maturing ratio and yield. 1) The varieties which were high in the maturing ratio and high in yield: Jaigoun, Sounsou, Norin #25 and Palkueng. 2) The varieties which were low in the maturing ratio and high in yield: Hokwang and Gosi. 3) The varieties which were early maturing rat io and low in yield: Hokwang and Gosi. 4) The varieties which were late maturing ratio and poor in yield: Eunbangju #101, Nampungand Sirogane 1, 000 grain weight and yield. 1) The varieties which were heavy in 1, 000 grains weight and high in yield=Norin #25 and Hokwang. 2) The varieties which were light in 1, 000 grains weight and high in yield=Sounsou and Jaigoun. 3) The varieties which were heavy in 1, 000 grains weight and poor in yield=Nongkwang and Eunbanju. 4) The varieties which were light in 1, 000 grains weight and poor in yield=Norin #29 and Sirogane. 2. The experiment on fertilization showed that the most desirable amount to be given per 10 Are was 10 kilograms of Nitrogen, 5 kilograms of phosphate and 6 kilograms of potassium; and when the Nitrogen given exceeded 8 kilograms, its effect was better when given in amsll consecutive (split) amounts, while the maturing ratio and the number of the flowers per panicle increased when Nitrogen was given in large amount during the later stage of growth of rice. 3. The experiment on the date and amount of seedling showed that the tested variety, Sunsou gave the best results when planted on the days between 25 April and 10 May. Eight liters per 10 Are were preferable if planted early and 12 liters per 10 Are if planted late. The reason why the later planting gave a lower yield was that the number of flowers per panicle was fewer. 4. The experiment on the irrigation for rice with direct sowing cultivation immersed in water showed that it was the most satisfactory when irrigated on 25th June, 55 days after its seedling, its plot giving the best yield. The plots 10th June and 15th July showed just as good results. However, irrigated later, than 15th July it showed lower yields. 5. Compared to the yield of the plot controlled by the common method, the yield from the plots treated with chemical herbicide such as LOROX, TOK, PCP, SWEP, Mo-338 on dry condition soil seemed poorer, but significant difference was not found statistically. On the other hand in the case where chemical herbicides such as TOK, Mo-338, Stam F-34 or ORDRAM were used after irrigation, the yield from the ORDRAM and TOK treated plots did not show significant differences compared to the common hand weed controling method, but those treated with chemicals other than the above showed a lower yield.

  • PDF

Comparative Study on Phenolic Compounds of Cheorwon Onion by Phosphite Treatment (아인산염 처리에 따른 철원양파의 페놀화합물 비교 연구)

  • Kim, Y.B.;Lee, H.J.;Park, C.H.;Kim, D.H.;Koo, H.J.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The aim of this study was to evaluate the change of phenolic compounds after phosphite treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is widely cultivated in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. Therefore it is said that the onion cultivated in this region has higher sugar content and higher taste than onion grown in the southern region. Phosphorus components are particularly important ingredients for promoting muscle development. However, if the phosphoric acid content of the soil part is maintained to a large extent until the harvest, the competition of the nutrients tends to cause decay of the root part. Therefore, it is important to improve the quality and shelf life of onion by inducing nutrient balance by applying foliar fertilization method on the reducing phosphorus at harvest time. In this study, acidity was controlled by diluting phosphorous acid(H3PO3) and potassium hydroxide(KOH), followed by leaf surface treatment with phosphite on onion. In this study, the concentration of phosphite was diluted to 500, 1,000, 1,500ppm and sprayed three times over the onion leaves in May 2018 using an atomizer and harvested at the end of June, and the phenolic compounds were analyzed by HPLC. As a result, the content of quercetin, one of the important substances in onion, was phosphite 500ppm(179.70㎍/g), 1,000(150.27), 1,500(105.95). The contents of caffeic acid, p-coumaric acid, ferulic acid, rutin, kaempferol, and sugar content were higher in the treatments than in the control. Therefore, the phosphite does not have a great influence on the growth, but it may play a role as a method of achieving balance with nitrogen in the rainy season by supplying the role of the material catalyst and the water soluble phosphoric acid and the potassium in the influence of the material change.

Effect of phosphorus application on appearance of algal water bloom and rice yield in rice-barley double cropping system

  • Hwang, Jae-Bok;Bae, Hee-Soo;Park, Tae-Seon;Choi, In-Bae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.233-233
    • /
    • 2017
  • Algal communities are important to maintain the aquatic ecosystems function. Algae have short life cycles, they respond quickly to environmental change and their diversity and density can indicate and the quality of their habitat. The bloom forms before the rice seedings have emerged, it may present a physical barrier that prevents the seedlings from penetrating the floodwater. Wind may also move the algal bloom, pushing the young plants beneath the surface. Another harmful action develops when the water dries up and the algae form a layer at the bottom of the field. The layer envelops the seedlings, which are not yet deeply rooted, and drag them to the surface when the water is let in again. Soil utilization pattern can be the mail facter affecting soil physico-chemical properties, especially in soil phosphorus (P). Solid content of the algae culture solution increased with the increase in the nitrogen rather the phosphors concentration. Phosphoric acid was treated with conventional treatments (100-0%, before transplanting time-tillering stage), 50-50%, 0-100%, and un-treated. The herbicide was treated on the 7 DAT (day after transplanting). Green algae samples were collected 20 DAT. Total phosphoric acid was the highest at 0.06 in 50-50% treatment in 20 DAT. The amount of green algae was about twice (9.8 mg/20ml) that of un-treated. Total number of green algae was 54 species(Green algae 35 species, Euglena 9 species, Stone wheel 10 species). Among the phosphoric acid treatment methods, the number of occurrences of green algae were the highest with 39 species in 0-100%, followed by 50-50%, 28 species, conventional treatments, 22 species, non-treatment, 18 species, respectively. Rice Yield was not significantly different by phosphoric treatment time, but slightly higher than un-treated. The maximal algal biomass was observed about 2weeks or 1 month after transplanting; the subsequent decrease of the biomass was related to the consumption by grazers and to a deficient light under the rice canopy. Maximal algal growth was observed just before tillering. To estimate the suitable method of phosphorus application in puddled-soil drill seeding of rice, available phosphorus appearance of algal water bloom, and rice yield were investigated in paddy soil of rice-barley double cropping system.

  • PDF

Application of the Life Cycle Assessment Methodology to Rice Cultivation in Relation to Fertilization (시비방법별 벼 재배에 따른 전과정평가 방법을 적용한 환경영향 평가)

  • Shin, Joung-Du;Lim, Dong-Kyu;Kim, Gun-Yeob;Park, Mun-Hee;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • The suitability of the life Cycle Assessment (LCA) methodology to analyze the environmental impact of rice cultivation with different fertilizing systems is investigated. The arst part of an LCA is an inventory of parameters used and emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment the inventory data were analyzed and aggregated in order to finally get one index representing the total environmental burden. For the life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact assessment method. The resulting index is called Eco-indicator value. The higher the Eco-indicator value the stronger is the total environmental impact of an analyzed fertilizing system. The rice field experiment conducted in middle parts of korea was chosen as an example for the life cycle impact analysis. In this experiment the treatments were consisted of none fertilizer plot (NF), standard fertilizer plot (SF) applied chemical fertilizers based on soil chemical analysis before rice transplanting, and efflux fertilized plot (EF) applied with pig wastes fermented as the same rates of SF plot as basis on total nitrogen content. The obtained Eco-indicator values were clearly different among the treatments in the rice trial. The total Eco-indicator values for SF and EF have been observed 58 and 38% relative to the NF, respectively. For all the treatments the environmental effects of eutrophication contributed most to the total Eco-indicator value. The results appeared that the LCA methodology is basically suitable to assess the environmental impact associated with different fertilizer applications for rice cultivation. A comparative analysis of the fertilizing system's contribution to global warming and eutrophication is possible.

Current Regional Cultural Situation and Evaluation of Grain Characteristics of Korean Wheat. I. Survey of Production Practices in Korean Wheat Cultivar Growers by Region (지역별 국산밀 재배 현황 및 원맥 특성 평가. I. 국산밀 재배 농가의 지역별 재배 현황 조사)

  • Kang, Chon-Sik;Kim, Kyung-Hoon;Seo, Yong-Won;Woo, Sun-Hee;Heo, Moo-Ryong;Choo, Byung-Kil;Hyun, Jong-Nae;Kim, Kee-Jong;Park, Chul Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The cultivation situation of Korean wheat of 175 farmers in nationwide for two years, 2010/2011 and 2011/2012, was analyzed to obtain basic data for extension cultivated area and enhancing the self-sufficiency ratio of Korean wheat. Compared to the mean temperature and precipitation in the normal year, the mean temperature was lower before the heading stage and higher amount of precipitation after the heading stage in 2010/2011 and higher the mean temperature and lower amount of precipitation after the heading stage in 2011/2012. Average cultivation career and area were 7.7years and 2.4~3.3ha, Keumkang cv. was mainly cultivated for two years and Jokyung and Baekjoong cvs. were increased cultivation areas in southern part of Korea, Gyeongsangnam-do, Jeolllanambuk-do and Kwangju metropolitan city, including in 2011/2012. Most farmers (144) sown wheat seeds from late October to the beginning November with broadcasting method and the other famers were sown using the drill method. Average amount for basal fertilizer was 29.7 kg/10a with complex fertilizer mixed for wheat and barley cultivation, which was higher amount compared to recommended rate of fertilizer amount by rural development administration. Top dressing using nitrogen fertilizer was applied from in the late February to the beginning March. Heading date was the beginning May in 2011 and the late April in 2012, which the mean temperature from regeneration stage to tillering stage in 2011 was higher than that of 2012. Most farmers harvested wheat in mid-June and Pre-harvest sprouting and Fusarium head blight were occurred in 2011 due to the high amount precipitation during grain filling period.

Changes of Frozen-Thawed Semen Characteristics in Miniature Pig and Duroc (Miniature Pig와 Duroc 종간의 동결-융해 후 정액 성상 비교)

  • Lee, Y.S.;Choi, W.C.;Lee, S.H.;Cheong, H.T.;Lee, S.Y.;Yang, B.K.;Park, C.K.
    • Journal of Embryo Transfer
    • /
    • v.21 no.3
    • /
    • pp.263-271
    • /
    • 2006
  • The purpose of this study was undertaken to compare ability of frozen-thawed sperm characteristics between two strains (miniature pig and Duroc). The semen was collected by gloved-hand method into a pre-warmed ($37^{\circ}C$) thermos bottle. The semen was diluted with same volume extender and added to LEY solution for freezing. The diluted semen was placed in 0.5 ml straws, and freezing was initiated by exposing the straws to liquid nitrogen ($LN_2$) vapours for 10 min before placing them into $LN_2$ for cryopreservation. The frozen-semen straw were thawed at 20, 37 and $50^{\circ}C$ for 1 min, 45 sec and 10 sec within water-bath. The semen sample were evaluated at 0, 3, 6, 9, and 12 h after incubation at $37^{\circ}C$ for analysis of sperm ability. Abnormality of spermatozoa in miniature pig was significantly (p<0.05) higher than that in Duroc at 0, 9 and 12 h of post-thawing incubation after frozen-thawing. The percentage of F-patterned spermatozoa in miniature pig was significantly (p<0.05) lower, while the percentage of AR (acrosome reacted spermatozoa) pattern was higher in the miniature than in the Duroc. On the other hand, there was no significant difference in the viability of spermatozoa thawed at different temperature ($20^{\circ}C\;and\;37^{\circ}C$) between two species, but the viability in miniature pig was higher (p<0.05) than in Duroc when sperm was thawed at $50^{\circ}C$. In conclusion, this study suggest that suitable freezing method for miniature pig semen is required for increasing post-thawing viability and fertilization capacity.