• 제목/요약/키워드: nitrogen dynamics

검색결과 208건 처리시간 0.029초

계분(鷄糞)의 부숙건조(腐熟乾燥)와 질소(窒素)의 행동(行動) (Dynamics of Nitrogen in Poultry Manure during its Processing)

  • 오왕근
    • 한국환경농학회지
    • /
    • 제3권1호
    • /
    • pp.57-62
    • /
    • 1984
  • 계분(鷄糞)을 가공(加工)할 때 생기는 질소(窒素)의 손실(損失)을 줄이는 방법(方法)을 강구(講究)하기 위(爲)하여 생계분(生鷄糞)을 린산(燐酸), 중과석(重過石), 과석(過石)으로 처리(處理)하여 3일간(日間) $35^{\circ}$에서 부숙건조(腐熟乾燥)하는 실내시험(室內試驗)을 실시(實施)하여 다음 결과(結果)를 얻었다. 1) 생계분(生鷄糞)에 린산(燐酸)이나 중과석(重過石), 과석(過石)을 처리(處理) 부숙(腐熟)시키므로서 암모니아의 휘산(揮散)을 줄여서 무처리(無處理)에서는 $40{\sim}60%$만 보전(保全)할 수 있었던 계분실소(鷄糞室素)를 $80{\sim}90%$까지 보전(保全)할 수 있었다. 2) 실소(室素)의 손실(損失)을 줄일 목적(目的)으로 시용(施用)하는 첨가물(添加物)은 계분(鷄糞)과 충분(充分)히 혼합(混合)되어야 한다. 3) 부숙계분(腐熟鷄糞)을 건조(乾燥)할 때 실소(室素)의 손실(損失)이 많다. $45{\sim}65^{\circ}$로 건조(乾燥)할 때 무처리(無處理)에서는 $70{\sim}90%$가 손실(損失)되고 린산(燐酸), 중과석(重過石), 과석처리(過石處理)에서는 $60{\sim}80%$가 소실(消失)되었다. 4) 미리 $65^{\circ}$로 높여 놓은 건조기(乾燥器)에 부숙계분(腐熟鷄糞) 시료(試料)를 넣어 말렸을 때는 점차적(漸次的)으로 온도(溫渡)를 높였을($45{\sim}65^{\circ}$) 때 보다 질소(窒素)의 손실(損失)이 적었다.

  • PDF

영천댐의 식물플랑크톤 군집과 환경요인의 동태 (Dynamics of Phytoplankton Community and the Physico-chemical Environmental Factors in Youngchun Dam)

  • 김숙찬;김한순
    • ALGAE
    • /
    • 제19권3호
    • /
    • pp.227-234
    • /
    • 2004
  • A study on the dynamics of phytoplankton community and the physico-chemical environmental factors was performed biweekly from April 1998 to March 1999 in Youngchun Dam. A total 72 phytoplankton taxa was identified and dominant taxa were blue-green algae and diatoms. The highest value of phytoplankton standing crop (24,826cells·ml$^{-1}$) was observed in September 7, 1998, the blooming period of blue-green algae Phormidium sp., while the lowest (318cells·ml$^{-1}$) was measured in June 18, 1999. The phytoplankton communities were dominated by blue-green algae of Anabaena planktonica, Microcystis aeruginosa and Phormidium sp. during the summer and autumn periods and were dominated by diatoms of Synedra acus and Aulacoseira spp. during the spring and winter periods. Secchi disc transparency, chlorophyll-a, total nitrogen, total phosphorus and silicate concentration were varied in the ranges of 0.4-2.5 m, 2.4-32.2mg·m$^{-1}$, 0.845-2.352mg·l$^{-1}$, 0.005-0.093mg·l$^{-1}$, 0.2-15.7mg·l$^{-1}$, respectively. The trophic status of Youngchun Dam were estimated eutrophic according to Lake Trophic States Index (LTSI).

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park

  • NamGung, Jeong;Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • 제31권4호
    • /
    • pp.291-295
    • /
    • 2008
  • Weight loss and nutrient dynamics of oak and pine leaf litter during decomposition were investigated from December 2005 through June 2008 at Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of oak and pine leaf litter were 0.314 and 0.217, respectively. After 30 months decomposition, remaining weight of oak and pine leaf litter was 45.5% and 58.1%, respectively. Initial C/N ratio of oak and pine leaf litter was 53.4 and 153.0, respectively. Carbon % of initial oak and pine leaf litter was similar with each other; however, nitrogen content of initial oak leaf litter (0.85%) was greater than that of initial pine leaf litter (0.33%). N and P concentration in both decomposing leaf litter increased significantly during decomposition. There was no net N and P mineralization period in decomposing pine leaf litter. K, Ca and Mg concentration in both decomposing leaf litter showed different pattern with those of N and P. After 30 months decomposition, remaining nutrients in oak and pine leaf litter were 97.7 and 216.2% for N, 123.2 and 216.5% for P, 39.3 and 44.8% for K, 47.9 and 40.6% for Ca, 30.7 and 51.2% for Mg, respectively.

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsing
    • 한국생태학회:학술대회논문집
    • /
    • 한국생태학회 2002년도 VIII 세계생태학대회
    • /
    • pp.101-105
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37%/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70% of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • 제25권4호
    • /
    • pp.235-239
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37$\%$/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70$\%$ of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

A Flow Analysis of a Refrigeration Warehouse where an Unusual Death of an Operator Occurred by Deficiency of Oxygen

  • Park, Chan-Seong;Moon, Jung-Eun;Kim, Yoon-Ho;Kim, Jin-Pyo
    • International Journal of Safety
    • /
    • 제5권2호
    • /
    • pp.29-33
    • /
    • 2006
  • A numerical flow analysis of the case of a refrigeration warehouse where an unusual death of an operator occurred by deficiency of oxygen is performed by using STAR-CD program of the computational fluid dynamics (CFD) code. The refrigeration room of the warehouse for storing the fruits maintains an atmosphere of 95% nitrogen and 5% oxygen by volume. When the operator was found dead in the refrigeration room, the room was in normal operating conditions except for the fact that the auxiliary door had been left open. For the flow analysis, unsteady 3-dimensional natural convection with mass transfer is considered. The flow analysis result is compared with the oxygen concentration level measured against time during on-site investigation. The change in oxygen concentration level in the warehouse due to the opening of the auxiliary door is found to be negligible.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

Off-design performance evaluation of multistage axial gas turbines for a closed Brayton cycle of sodium-cooled fast reactor

  • Jae Hyun Choi;Jung Yoon;Sungkun Chung;Namhyeong Kim;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2697-2711
    • /
    • 2023
  • In this study, the validity of reducing the number of gas turbine stages designed for a nitrogen Brayton cycle coupled to a sodium-cooled fast reactor was assessed. The turbine performance was evaluated through computational fluid dynamics (CFD) simulations under different off-design conditions controlled by a reduced flow rate and reduced rotational speed. Two different multistage gas turbines designed to extract almost the same specific work were selected: two- and three-stage turbines (mid-span stage loading coefficient: 1.23 and 1.0, respectively). Real gas properties were considered in the CFD simulation in accordance with the Peng-Robinson's equation of state. According to the CFD results, the off-design performance of the two-stage turbine is comparable to that of the three-stage turbine. Moreover, compared to the three-stage turbine, the two-stage turbine generates less entropy across the shock wave. The results indicate that under both design and off-design conditions, increasing the stage loading coefficient for a fewer number of turbine stages is effective in terms of performance and size. Furthermore, the Ellipse law can be used to assess off-design performance and increasing exponent of the expansion ratio term better predicts the off-design performance with a few stages (two or three).

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • 제7권4호
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.

Effects of Different Additives on Fermentation Characteristics and Protein Degradation of Green Tea Grounds Silage

  • Wang, R.R.;Wang, H.L.;Liu, X.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권5호
    • /
    • pp.616-622
    • /
    • 2011
  • This study evaluated the fermentation characteristics and protein degradation dynamics of wet green tea grounds (WGTG) silage. The WGTG was ensiled with distilled water (control), or lactic acid bacteria (LAB), enzyme (E), formic acid (FA) and formaldehyde (FD) prior to ensiling. Three bag silos for each treatment were randomly opened at 0, 3, 7, 14, 28 and 60 days after anaerobic storage. For all the treatments, except for FA, there was a rapid decline in pH during the first 7 days of ensiling. LAB treatment had higher lactic acid content, lower ammonia-N ($NH_3$-N) and free-amino nitrogen (FAA-N) contents than other treatments (p<0.05). E treatment had higher lactic acid, water-soluble carbohydrates (WSC) and non-protein nitrogen (NPN) content than the control (p<0.05). FA treatment had higher $NH_3$-N and FAA-N content than the control (p<0.05). FD treatment had lower NPN and FAA-N content than the control, but it did not significantly inhibit the protein degradation when compared to LAB treatment (p>0.05). Results indicate that LAB treatment had the best effect on the fermentation characteristics and protein degradation of WGTG silage.