DOI QR코드

DOI QR Code

Off-design performance evaluation of multistage axial gas turbines for a closed Brayton cycle of sodium-cooled fast reactor

  • Jae Hyun Choi (Department of Mechanical Engineering, POSTECH) ;
  • Jung Yoon (Korea Atomic Energy Research Institute) ;
  • Sungkun Chung (Department of Mechanical Engineering, POSTECH) ;
  • Namhyeong Kim (Division of Advanced Nuclear Engineering, POSTECH) ;
  • HangJin Jo (Department of Mechanical Engineering, POSTECH)
  • Received : 2022.11.20
  • Accepted : 2023.04.12
  • Published : 2023.07.25

Abstract

In this study, the validity of reducing the number of gas turbine stages designed for a nitrogen Brayton cycle coupled to a sodium-cooled fast reactor was assessed. The turbine performance was evaluated through computational fluid dynamics (CFD) simulations under different off-design conditions controlled by a reduced flow rate and reduced rotational speed. Two different multistage gas turbines designed to extract almost the same specific work were selected: two- and three-stage turbines (mid-span stage loading coefficient: 1.23 and 1.0, respectively). Real gas properties were considered in the CFD simulation in accordance with the Peng-Robinson's equation of state. According to the CFD results, the off-design performance of the two-stage turbine is comparable to that of the three-stage turbine. Moreover, compared to the three-stage turbine, the two-stage turbine generates less entropy across the shock wave. The results indicate that under both design and off-design conditions, increasing the stage loading coefficient for a fewer number of turbine stages is effective in terms of performance and size. Furthermore, the Ellipse law can be used to assess off-design performance and increasing exponent of the expansion ratio term better predicts the off-design performance with a few stages (two or three).

Keywords

References

  1. N. Alpy, et al., Gas cycle testing opportunity with ASTRID, the French SFR prototype, in: Supercritical CO2 Power Cycle Symposium, 2011, pp. 24-25.
  2. S.B. Seo, H. Seo, I.C. Bang, Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop, Ann. Nucl. Energy 87 (2016) 621-629. https://doi.org/10.1016/j.anucene.2015.10.020
  3. O. Olumayegun, M. Wang, G. Kelsall, Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR), Appl. Energy 191 (2017) 436-453. https://doi.org/10.1016/j.apenergy.2017.01.099
  4. D.H. Hahn, Y.I. Kim, Y.G. Kim, KALIMER-600 Conceptual Design Report, 2007.
  5. J.H. Park, J. Yoon, J. Eoh, H. Kim, M.H. Kim, Optimization and sensitivity analysis of the nitrogen Brayton cycle as a power conversion system for a sodium-cooled fast reactor, Nucl. Eng. Des. 340 (2018) 325-334. https://doi.org/10.1016/j.nucengdes.2018.09.037
  6. Y. Ahn, J.I. Lee, Study of various Brayton cycle designs for small modular sodium-cooled fast reactor, Nucl. Eng. Des. 276 (2014) 128-141. https://doi.org/10.1016/j.nucengdes.2014.05.032
  7. J. Yoon, J. Eoh, H. Kim, D.E. Kim, M. Kim, Design characteristics of N2 Brayton cycle power conversion system coupled with an SFR in terms of thermal balance and cycle efficiency, in: Transactions of the Korean Nuclear Society Spring Meeting, 2018. Jeju, Korea.
  8. J. Yoon, J. Eoh, H. Kim, D.E. Kim, M. Kim, Development of computational code for heat balance analysis in N2 Brayton cycle power conversion system coupled with an SFR, in: Transactions of the Korean Nuclear Society Spring Meeting, 2017. Jeju, Korea.
  9. J.H. Choi, J. Yoon, J. Eoh, M.H. Kim, H. Jo, Performance and size comparison of two-stage and three-stage axial turbines for a nitrogen gas Brayton cycle coupled with a sodium-cooled fast reactor, Nucl. Eng. Des. 380 (2021), 111309.
  10. P. Denholm, J.C. King, C.F. Kutcher, P.P. Wilson, Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage, Energy Pol. 44 (2012) 301-311. https://doi.org/10.1016/j.enpol.2012.01.055
  11. G. Mauger, N. Tauveron, Modeling of a cold thermal energy storage for the flexibility of thermal power plants coupled to Brayton cycles, Nucl. Eng. Des. 371 (2021), 110950.
  12. O. Olumayegun, M. Wang, G. Kelsall, Closed-cycle gas turbine for power generation: a state-of-the-art review, Fuel 180 (2016) 694-717. https://doi.org/10.1016/j.fuel.2016.04.074
  13. N. Zhang, R. Cai, Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration, Energy Convers. Manag. 43 (9-12) (2002) 1323-1337. https://doi.org/10.1016/S0196-8904(02)00018-3
  14. G. Mauger, N. Tauveron, F. Bentivoglio, A. Ruby, On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code, Energy 168 (2019) 1002-1016. https://doi.org/10.1016/j.energy.2018.11.063
  15. G. Mauger, F. Bentivoglio, N. Tauveron, Description of an improved turbomachinery model to be developed in the CATHARE-3 code for ASTRID power conversion system application, in: Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), vol. 30, 2015. Chicago, IL, USA.
  16. F. Lou, J. Fabian, N.L. Key, The effect of gas models on compressor efficiency including uncertainty, J. Eng. Gas Turbines Power 136 (1) (2014).
  17. J. Xu, et al., Perspective of S-CO2 power cycles, Energy 186 (2019), 115831.
  18. N. Simon, C. Latge, L. Gicquel, Investigation of sodium-carbon dioxide interactions with calorimetric studies, in: Proc, ICAPP2007, 2007.
  19. J.-H. Eoh, H.C. No, Y.-H. Yoo, S.-O. Kim, Sodium-CO2 interaction in a supercritical CO2 power conversion system coupled with a sodium fast reactor, Nucl. Technol. 173 (2) (2011) 99-114. https://doi.org/10.13182/NT11-A11541
  20. S. Miyahara, H. Ishikawa, Y. Yoshizawa, Experimental investigation of reaction behavior between carbon dioxide and liquid sodium, Nucl. Eng. Des. 241 (5) (2011) 1319-1328. https://doi.org/10.1016/j.nucengdes.2010.08.006
  21. D.H. Cooke, On prediction of off-design multistage turbine pressures by Stodola's ellipse, J. Eng. Gas Turbines Power 107 (3) (1985) 596-606. https://doi.org/10.1115/1.3239778
  22. D. Mallinson, W. Lewis, The part-load performance of various gas-turbine engine schemes, Proc. Inst. Mech. Eng. 159 (1) (1948) 198-219. https://doi.org/10.1243/PIME_PROC_1948_159_019_02
  23. W. Fuls, Enhancement to the traditional ellipse law for more accurate modeling of a turbine with a finite number of stages, J. Eng. Gas Turbines Power 139 (11) (2017).
  24. Y. Ma, T. Morosuk, M. Liu, J. Liu, Investigation of off-design characteristics of an improved recompression supercritical carbon dioxide cycle for concentrated solar power application, Int. J. Energy Res. 45 (2) (2021) 1818-1835. https://doi.org/10.1002/er.5857
  25. T. Rajabloo, D. Bonalumi, P. Iora, Effect of a partial thermal decomposition of the working fluid on the performances of ORC power plants, Energy 133 (2017) 1013-1026. https://doi.org/10.1016/j.energy.2017.05.129
  26. E. Oko, M. Wang, Dynamic modelling, validation and analysis of coal-fired subcritical power plant, Fuel 135 (2014) 292-300. https://doi.org/10.1016/j.fuel.2014.06.055
  27. S.L. Dixon, C. Hall, Fluid Mechanics and Thermodynamics of Turbomachinery, Butterworth-Heinemann, Oxford, UK, 2013.
  28. F. Menter, J.C. Ferreira, T. Esch, B. Konno, A. Germany, The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines, Proc. Int. Gas Turbine Congr. 1 (2003) 2-7.
  29. D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15 (1) (1976) 59-64. https://doi.org/10.1021/i160057a011
  30. S. Ramdharee, E. Muzenda, M. Belaid, A review of the equations of state and their applicability in phase equilibrium modeling, in: International Conference on Chemical and Environmental Engineering, 2013, pp. 84-87.
  31. I. ANSYS, in: ANSYS CFX-Solver Theory Guide, Release 16.2. ANSYS, 2015. Inc.
  32. B.E. Poling, J.M. Prausnitz, J.P. O'Connell, Properties of Gases and Liquids, McGraw-Hill Education, New York, NY, 2001.
  33. T. Takizuka, S. Takada, X. Yan, S. Kosugiyama, S. Katanishi, K. Kunitomi, R&D on the power conversion system for gas turbine high temperature reactors, Nucl. Eng. Des. 233 (1-3) (2004) 329-346. https://doi.org/10.1016/j.nucengdes.2004.08.017
  34. A. Moisseytsev, J.J. Sienicki, Recent developments in s-CO2 cycle dynamic modeling and analysis at ANL, in: 4th International Symposium-Supercritical CO2 Power Cycles, 2014. Pittsburgh, Pennsylvania, USA, September 9-10.
  35. E. Liese, J. Albright, S.A. Zitney, Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle, Appl, Energy 277 (2020), 115628.
  36. X. Wang, et al., Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle, Energy AI 5 (2021), 100078.
  37. H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions, Cambridge University Press, Cambridge, UK, 2011.
  38. Y. Andreopoulos, J.H. Agui, G. Briassulis, Shock wave-turbulence interactions, Annu. Rev. Fluid Mech. 32 (1) (2000) 309-345. https://doi.org/10.1146/annurev.fluid.32.1.309