• Title/Summary/Keyword: nitrogen cold box

Search Result 17, Processing Time 0.018 seconds

Performance Improvement of Precooling Process and Cold Box in Hydrogen Liquefaction Process Using LNG Cold Energy (LNG 냉열이용 액체수소 제조공정의 예냉 및 Cold box의 성능 개선 연구)

  • Yun, Sang-Kook;Yoon, Na-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.56-61
    • /
    • 2020
  • For the hydrogen liquefaction, the large amount of energy is consumed, due to precooling, liquefaction and o-p conversion processes. The aim of this work is to improve the performance of hydrogen liquefaction process by introducing the new energy saving processes, that are the liquid nitrogen precooling process by using LNG cold energy, and the new design of cold box insulation using cold air circulation. The results show that the indirect use of LNG cold energy in precooling process enables not only to get energy saving, but to make safer operation of liquefaction plant. In new cold box, the energy loss of equipments could be reduced by nearly 35%~50% compared to the present perlite insulation, if insulation structure is organised as 3mm steel wall/20cm PUF/5cm air/20cm PUF/equipment. Additionally the equipments installed in cold box can get cooling effect, if the temperature is higher than the temperature of cold air. The application of this results can gives to increase the liquid yield of about 50% substantially in industrial hydrogen liquefaction plant.

Thermal Analysis of a Cold Box for a Hydrogen Liquefaction Pilot Plant with 0.5 TPD Capacity (0.5 TPD 급 수소액화 파일럿 플랜트의 콜드박스 열해석)

  • KIM, HYOBONG;HONG, YONG-JU;YEOM, HANKIL;PARK, JIHO;KO, JUNSEOK;PARK, SEONG-JE;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.571-577
    • /
    • 2020
  • Thermal analysis was performed for a cold box of a hydrogen liquefaction pilot plant with 0.5 ton/day capacity. The pilot plant has adopted a hydrogen liquefaction process using two-stage helium Brayton cycle with precooling of liquid nitrogen. The cold box for hydrogen liquefaction has generally vacuum insulation but inevitable heat invasion by conduction and radiation exists. The heat loads were calculated for cold box internals according to multilayer insulation emissivity. Total heat load of 181.7 W is estimated for emissivity of 0.03 considered in field condition.

A Study on the Development for a Cryogenic Air Separation Unit (심랭식 공기분리장치 개발 연구)

  • 문흥만
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.132-135
    • /
    • 2001
  • Cryogenic air separation unit(ASU) was developed about 100 year ago in Europe. However, because there is not any ability of process design or manufacturing of ASU in Korea, many ASUs come from advanced countries every year. The purpose of this study is the development of cryogenic air separation unit by our own ability, especially cold box for nitrogen production. On this study, we developed the computer program for physical properties of gases and process simulation. We also did process design and manufactured of cold box, including air separation column, liquid air heat exchanger and condenser. The result of cold box test was successful.

  • PDF

The maintenance record of the KSTAR helium refrigeration system

  • Moon, K.M.;Joo, J.J.;Kim, N.W.;Chang, Y.B.;Park, D.S.;Kwag, S.W.;Song, N.H.;Lee, H.J.;Lee, Y.J.;Park, Y.M.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.6-9
    • /
    • 2013
  • Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB#1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there's another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

Establishment of Effective Freshness Indicators for Seafood During Room-Temperature Distribution Using Commercial Cold Packs and Styrofoam Boxes (시판 보냉팩 및 스티로폼 박스 상온 유통시 효율적인 수산물 선도지표 설정)

  • Lee, Ji Un;Heu, Min Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.670-680
    • /
    • 2022
  • Owing to the lack of a cold-chain distribution system, most seafood is generally distributed under room temperature conditions. However the degradation of freshness during the distribution process can lead to disputes between sellers and consumers. The most widely used method for low-temperature distribution for seafood includes packaging it with styrofoam boxes and cold packs. In this study, vacuum-packed frozen fillets of four fish species of [white meat (Paralichthys olivaceus and Sebastes schlegelii) and red meat (Scomber japonicus and Scomberomorus niphonius)] were placed in styrofoam boxes with cold packs. Thereafter, changes in chemical (including pH, volatile basic nitrogen, and trimethylamine), physical (odor intensity, hardness, and chewiness), and microbial (viable cell count) characteristics of the fillets were measured during storage at 25℃. To identify the suitable method of determining freshness during the room-temperature distribution, several factors were considered, which included significant difference verification, correlation coefficients, and economic efficiency (experimental cost and time). Volatile basic nitrogen, pH, odor intensity, and viable cell count are the most rapid and accurate freshness indicators for determining freshness of frozen fish fillets during.

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Comparative Assessment of Freshness Preservation in Vacuum-Packed Frozen Olive Flounder Paralichthys olivaceus and Mackerel Scomber japonicus Fillets During Room Temperature Distribution Using Varied Quantities of Commercially Available Cold Packs (시판 보냉팩 개수에 따른 진공포장 냉동 넙치(Paralichthys olivaceus) 및 고등어(Scomber japonicus) 필렛의 상온유통 중 선도유지능 비교평가)

  • So Hee Kim;Ji Un Lee;Eun Bi Jeon;Jin Kim;Pantu Kumar Roy;Shin Young Park;Jung-Suck Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.818-825
    • /
    • 2023
  • The surge in online seafood consumption has increased parcel delivery, leading to a need to implement effective preservation methods. As the cold chain system is not fully established in Korea, styrofoam boxes and cold packs are commonly used for low-temperature seafood distribution. The impact of cold packs on product preservation depends on the number utilized. Herein, the freshness of vacuum-packed frozen fish fillets (Paralichthys olivaceus and Scomber japonicus) stored at 25±0.5℃ for up to 84 h was measured. Chemical (pH and volatile base nitrogen), microbiological (viable cell count), and physical (odor intensity) properties were assessed using 2 or 4 cold packs in a styrofoam box. Four cold packs yielded lower values, indicating superior freshness, and extended fish freshness by approximately 12 h compared with two cold packs. Therefore, it is recommended to use a minimum of 4 cold packs (-350 g/cold pack) in a styrofoam box for distributing approximately 300 g of frozen fish fillets at room temperature during the summer, considering an average delivery period of 2 days in Korea.

A Study on the Development of a Cryogenic Air Separation Unit to Produce High Purity Nitrogen (고순도 질소생산용 초저온 공기분리장치 개발 연구)

  • 용평순;문흥만;이성철
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • For developing the cryogenic air separation unit, it requires some technology such as basic process design. equipment design and manufacturing based on the cryogenic physical properties and separation theory. In this study, we developed a process and equipment for producing high purity nitrogen which has the production capacity of 1600N㎥/h under 1 ppm $O_2$ and $H_2O$. Also we found that the number of theoretical plate(NTP) of distillation column was 44 and maximum nitrogen recovery ration of this process was 42% from the process simulation. The performance test was also carried out for the nitrogen recovery ratio and equipment efficiency. The results showed that the optimum nitrogen recovery was 41% and the maximum equipment efficiency was attained.

  • PDF

Commissioning results of the KSTAR helium refrigeration system (KSTAR 저온헬륨설비 시운전 결과)

  • Cho, K.W.;Chang, H.S.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, Y.S.;Bak, J.S.;Yang, S.H.;Fauve, E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

The Design of Cryogenic System for KSTAR TOKAMAK (KSTAR TOKAMAK을 위한 저온시스템의 설계)

  • 김동락;오영국;정영수;이정민;최창호;임기학;허남일;김양수;박영민
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.48-49
    • /
    • 2001
  • Cryogenic technology is one of the key technologies for fusion reactor equipped with superconducting coil for plasma confinement. The KSTAR(Korea Superconducting Tokamak Advanced Research)Project is in progress since 1996. Major parameters of the KSTAR tokamak are : major radius 1.8m, minor radius 0.5m, toroidal field 3.5 Tesla and plasma current 2MA with a strongly shaped plasma cross-section and double -null diverter. Considering practical engineering constraints, the KSTAR device is designed for a pulse length of 300 sec in up-graded operation mode but in the initial configuration would provide a pulse length of 20 sec provided by the poloidal coil system in base-line operation mode. The cryogenic system is composed as follows : cold box, helium compressor system, distribution box, helium gas buffer tank, helium gas purifying system, gas recovery system, liquid helium storage dewar, current lead box, current bus line and liquid nitrogen storage tank.

  • PDF