• 제목/요약/키워드: nitrogen and phosphate removal

검색결과 75건 처리시간 0.024초

세라믹 담체에 적용된 해양박테리아 4종의 저농도 질소-인 제거 (Low Concentrated Nitrogen-Phosphate Removal of 4 Strains of Marine Bacteria Applied to Ceramic Media)

  • 이건섭;김소정;정영재;김동균;이상섭;오정균;이택견
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4910-4916
    • /
    • 2012
  • 세라믹담체에 적용한 4종의 해양박테리아 (Aeromonas hydrophila, Chryseomonas indologenes, Pseudomonas diminuta, Vibrio parahaemolyticus)의 저농도 질소 인 제거 효율의 변화를 분석하였다. 해양박테리아는 광양만에서 분리 동정하였다. 담체에 적용한 4종의 해양박테리아 모두 대조군에 보다 약 3배 정도의 성장률이 증가하였으며, 암모니아서 질소 제거효율도 30% 이상 증가하였다. 질산성 질소의 제거 효율은 A. hydrophila 균주가 가장 높았으며, 인의 제거는 P. diminuta 균주가 가장 높은 것으로 나타났다. 본 연구의 결과는 세라믹담체는 질소-인 제거 효율 증진에 좋은 재료이며, 분리된 해양박테리아는 현장의 저농도 질소-인 조절에 유용할 수 있음을 보여준다.

연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향 (Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process)

  • 전석준;김한수
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.

인공하수 조성 성분에 따른 SBR 처리 공정의 효율에 관한 연구 (A Study on Efficiency of SBR Process by Composition of Artificially Wastewater)

  • 이장훈;장승철;권혁구;김동욱
    • 한국환경보건학회지
    • /
    • 제31권2호
    • /
    • pp.99-106
    • /
    • 2005
  • The removals of organic matter, nitrogen and phosphate in wastewater were investigated with Sequencing Batch Reactor (SBR). Glucose and sodium acetate were Used for organic carbon source so as to know nutrient removal efficiency in proportion to MLSS concentration. In the case of glucose, the COD removal rate was $74\%,\;41\%\;and\;66\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was $57\%,\;21\%\;and\;38\%$, the T-N was $24\%,\;13\%\;and\;44\%$, and the T-P was $12\%,\;21\%\;and\;33\%$. As a result, the removal rate of organic materials showed the finest remove when MLSS was 5000, but the nutrient removal rate appeared as was best when MLSS was 1000. In the case of sodium acetate, the COD removal rate was $83\%,\;81\%\;and\;86\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was appeared by $76\%,\;82\%\;and\;92\%$, the T-N $57\%,\;42\%\;and\;78\%$, and the T-P $48\%,\;52\%\;and\;38\%$. As a result, organic and T-N removal rates were best when MLSS was 1000. But, the T-P removal rates were best when MLSS was 3000. Glucose was shown fast removal in reaction beginning, but screened by more efficient thing though sodium acetate removes organic matter, nitrogen and phosphate. Form of floc was ideal in all reactors regardless of carbon source and MLSS concentration. And its diameter was about $200\~500{\mu}m$.

경량기포콘크리트를 이용한 인과 질소 및 음이온계면활성제 제거 (Removing of Phosphate, Nitrogen and Anion surfactants in the Wastewater using ALC)

  • 홍영호
    • 환경위생공학
    • /
    • 제16권1호
    • /
    • pp.102-107
    • /
    • 2001
  • This research was carried out investigate the removed T-P, T-N and anion surfactants using Autoclaved Lightweight Concrete(ALC) in wastewater treatment system. Effects of pH, TDS on aqueous solution was measured. Specific area which measured by BET was $27.66m^2/g$. The phosphorous, nitrogen and anion surfactants removal efficiencies were examined by using artificial waste water(T-P : 66~73mg/L, T-N : 56~136mg/L and anion surfactants : 10~31mg/L). The results showed that the ALC was effective material as a adsorbent due to the structure and porosity. It was found that anion surfactants removed was 85~95%, phosphate removed was 92% and nitrogen removed was 90% in artificial wastewater. Agitation process was more effective than aeration process in that case of nitrogen removal system using ALC.

  • PDF

Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구 (A Study on the Phosphorus Resources Recovery using the MAP + PACI)

  • 김동하
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리 (Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process)

  • 원성연;민경국;이상일
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

도시 하수내 질소와 인의 제거균주 분리 및 동정에 관한 연구 (The Isolation and Identification of Valuable Bacteria for Removal of Nitrogen and Phosphate in Municipal Waste Water)

  • Kim, Chul-Ho;Yoon, Sung-Nyo;Chang, Sung-Yeoul;Park, Yung-Keel
    • The Korean Journal of Ecology
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 1989
  • Bacterial strains which have excellent removal capacity of phosphate or reduction capacity of were isolated from waste water. Among isolated strains. WR8 and WR1 strains were showed goood efficiency in removal of phosphate and reduction of respectively. When each strain was cultivated in waste water, WR8 strain removed about 85% of phosphate and WR1 strain reduced about 85% of -N. By the result of investigation of morphological and physiological characteristics, WR8 was identified as Aeromonas hydrophila and WR1 as Klebsiella pneumoniae.

  • PDF

Struvite 결정화에 의한 질소 및 인의 제거 (Removal of Nitrogen and Phosphorus Using Struvite Crystallization)

  • 원성연;박승국;이상일
    • 대한환경공학회지
    • /
    • 제22권4호
    • /
    • pp.599-607
    • /
    • 2000
  • 본 연구는 연안의 부영양화에 주원인으로 지적되고 있는 비료공장의 질소를 struvite 결정화에 의해 제거하였다. Struvite의 결정화는 $MgNH_4PO_4$의 형태로 알칼리성 용액에는 불용성이다. 여천공단내 N 비료화학폐수는 유기물 및 질소의 농도가 각각 330mg/L 및 550mg/L로 질소의 농도가 높고 유기물의 농도가 낮은 폐수로 물리화학적 전처리없이 기존 생물학적 처리 방법으로는 불가능한 실정이다. 실험은 마그네슘원으로 간수와 $MgCl_2$$Mg(OH)_2$를 이용하였으며 반응시 미치는 물리화학적 영향인자를 검토하였다. 이때 질소의 제거효율은 각각 71, 81 및 83%이었으며 인의 제거효율은 각각 99, 98 및 93%이었다. 반응시 최적 pH는 10.5~11이었으며, 교반시간 변화에 따른 반응은 매우 신속히 진행되어 2분만에 완료되었다. 따라서 질소 및 인의 제거시에는 간수 및 $MgCl_2$를 이용한다면 짧은 시간에 높은 제거효율의 기대가 가능하며, 소금제조공정의 부산물인 간수의 이용은 화학약품을 대체하여 보다 경제적인 처리방법이 될 수 있다.

  • PDF

실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구 (The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory)

  • 김태윤;권용주;강충현;김종영;신현석;권순철;차성민
    • 한국습지학회지
    • /
    • 제20권3호
    • /
    • pp.263-271
    • /
    • 2018
  • 생활 하수 및 농축산 폐수를 통한 하천으로의 다량의 질소와 인의 유입은 부영양화를 초래하여 하천 자정작용에 악영향을 끼친다. 본 연구에서는 컬럼 실험을 통한 흡착제(활성탄, 제올라이트, 여과사)의 여재층 높이에 따른 암모니아성 질소, 인산염 제거특성을 분석하고, 밀도범함수이론(density functional theory, DFT)를 바탕으로 한 양자역학적 전산 모사를 통해 흡착제와 암모니아성질소($NH_4{^{+}}$)와 인산염($PO_4{^{3-}}$)에 대한 화학적 흡착 거동을 분석하였다. 컬럼 실험 결과, 암모니아성 질소에 대한 제거효율은 제올라이트(95.1%)>활성탄(65.8%)>여과사(10.7%), 인산염의 제거효율은 활성탄(99.6%)>제올라이트(18.8%)>여과사(10.9%) 순으로 나타났다. 제올라이트의 경우, 여재층의 높이에 관계없이 90%이상의 암모니아성 질소에 대한 높은 흡착력을 가졌고, 활성탄의 경우 여재층의 높이가 증가할수록 인과 질소에 대한 높은 흡착효율을 가졌다. DFT를 이용한 흡착제(산화 알루미늄, 활성탄, 여과사)와 영양염류($PO_4{^{3-}}$, $NH_4{^{+}}$)에 대한 흡착거동 분석결과, 제올라이트는 암모니아성 질소($NH_4{^{+}}$)에 대한 높은 흡착에너지(-6.43 eV)를 가졌다. 활성탄의 경우 여과사보다 좁은 HOMO-LUMO 밴드갭을 가져, 전자 이동에 유리한 환경을 조성하여 높은 흡착에너지(-7.10eV)로 영양염류가 제거되는 것을 확인할 수 있었다.

천연 Zeolite와 산화철을 이용한 폐수 중 질소 및 인의 처리 (Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide)

  • 원성연;이상일
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.104-109
    • /
    • 2004
  • Removal of nutrients from domestic sewage or industrial wastewater is needed to protect surface waters from eutrophication. This research was carried out to remove the nitrogen (N) and phosphorus (P) from the wastewater using the iron oxide obtained from the steel industry and the natural zeolite, respectively. This research was conducted in both batch and continuous systems. The removal efficiency of the nutrients was evaluated in the batch system using the varying concentrations of zeolite and iron oxide added. The removal efficiency of N was 60% at the 8g of zeolite added. In the same condition, the removal efficiencies of N were 76% and 82% at 12g and 16g of zeolite added, respectively. Removal efficiency of P was 80% as 8g of iron oxide was added. The removal efficiency of P was correspondingly increased as the concentration of iron oxide was increased. Continuous column system was also used to evaluate the removal efficiency of N and P by the addition of zeolite and ferric oxide, respectively. Removal efficiencies of N were compared in the mixed packing, two stage, and four stage columns, respectively. The removal efficiencies (80%) of N in the separate packed columns (two and four stages) were higher than the mixed packing column (400%) after 90 hr. Whereas, the removal efficiencies of P were similar to each other in the three columns.