• Title/Summary/Keyword: nitrogen addition

Search Result 2,012, Processing Time 0.026 seconds

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

Development of Nitrogen Cooling Equipment for Personalized Local Area (개인 맞춤형 국소부위 질소 냉각 장비 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.913-916
    • /
    • 2020
  • In this paper, we propose the development of nitrogen cooling equipment for personalized local area. The proposed equipment consists of a cold air supply module, a body, and nitrogen injection with the following characteristics. First, it automatically controls the amount and time of cold air supply by utilizing information measuring skin temperature with volumetric temperature sensors, so it can have a competitive edge in function by ensuring complete safety. Second, if the distance measuring sensor is applied to the skin for more than a certain distance, it can block the cold air or control the discharge of nitrogen in conjunction with the control GUI to improve the efficiency of higher cooling therapy while providing safe management. Third, by installing a control module that can control the supply of nitrogen, the cost of maintenance can be minimized by minimizing the loss of nitrogen. Experiments at an external testing agency to evaluate the performance of the proposed equipment showed that the accuracy of the temperature sensor was measured in the range of ±3.8%, which is lower than the world's highest level(±5%), with a range of 110℃ to -160℃ similar to the world's highest level. Distance accuracy was measured in the range of ±3.0%, lower than the world's highest level(±5%), and weight accuracy in the range of ±0.1%, lower than the world's highest level(±5%). In addition, emission control was measured in four stages, higher than the world's highest level(stage 1) and nitrogen use was measured at 0.8L/min below the world's highest(6L/min). Therefore, the effectiveness of the methods proposed in this paper was demonstrated because they produced the same results as the world's highest levels.

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment (질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성)

  • In Woo Lee;Seongjae Myeong;Chung Gi Min;Seongmin Ha;Seoyeong Cheon;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

Kinetic Studies on the Nucleophilic Addition of Thiophenol Derivatives to 4'-[N- (9-Acridinyl) ]-1'-( N- methanesulfonyl) -3'-methoxyquinonediimide

  • 김태린;정동인;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.374-379
    • /
    • 1997
  • The rate constants for the nucleophilic addition of thiophenol derivatives (p-OCH3, H, p-CH3, m-CH3, p-Br and p-NO2) to 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide (AMQD) were determined by ultraviolet spectrophotometer in water at 5 ℃, and rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, Bronsted plot, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: Below pH 2.5, the reaction proceeded by the addition of thiophenol molecule to 6'-position of quinonoid after protonation at the acridinyl nitrogen. Above pH 6.2, the addition of sulfide anion to 6'-position of quinonoid was rate controlling. However, in the range of pH 3.0-6.0, these two reactions occured competively.

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

Antioxidative Activity and Quality Characteristics of Kochujang Amended with Different Ratios of Deodeok (Condonopsis lanceolata) Root Powder (더덕분말을 첨가한 고추장의 품질 특성 및 항산화 활성)

  • Kim, Ok-Sun;Sung, Jung-Min;Ryu, Hye-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.5
    • /
    • pp.667-676
    • /
    • 2012
  • This study was conducted to investigate the quality characteristics and antioxidant activity of Kochujang following the addition of deodeok (Condonopsis lanceolata) powder. To accomplish this, 1%, 3% and 5% deodeok powder was added to Kochujang and the samples were then incubated at $30^{\circ}C$. during which time the general ingredients, water content, acidity, salinity, reducing sugar content, amino-nitrogen content and DPPH were analyzed at intervals of about two weeks. The water crude protein, crude fat and ash content were 3.61%, 8.44%, 4.62% and 8.85%, respectively. The initial acidity was 3.23~3.97%, and this increased to 4.39~44.86%. highlight please clarify this, I cannot infer your intended meaning; however, this can likely be deleted. The salinity was 7.42~7.73%, and 5% with deodeok powder producing the lowest content and showing a tendency to decrease during the storage period. The early amino-nitrogen content was 274.0~333.1%, with higher nitrogen contents being associated with large amounts of deodeok powder. The amino-nitrogen content during the storage period increased to the 4th week, then decreased. Additionally, the a value decreased sharply during the 4-week storage period. Addition of large amount of deodeok powder significantly improved the free radical scavenging activity. The free radical scavenging activity of 1%, 3% and 5% deodeok powder was higher than that of Kochujang throughout the maturation period. Overall, the results of this study indicate that there is the potential to develop functional foods by the addition of deodeok.

Reduction of nitrogen loss in aerobic composting process using phosphorus-bearing waste (인 함유 폐기물을 활용한 퇴비화 공정에서의 질소 손실 저감)

  • Song, Young Hak;Lee, Dong Min;Baek, Kyung Min;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.54-62
    • /
    • 2011
  • This study was undertaken to investigate the effects of bone waste on the conservation of nitrogen in aerobic composting process by inducing the struvite crystallization, which was known as a powerful method for conservation of nitrogen in composting reaction. Bone waste was dried at oven and crushed to less than 3 mm prior to use. It was found phosphorus content in bone waste was about 20.9% of the fixed solids from the leaching experiments using sulfuric acid. Addition of seed compost affected the progress of composting reaction substantially. In case seed compost was not used, the duration of initial low pH was greater than seed compost was added. This prolonged acidic pH may have a beneficial effect on the leaching of P from the bone waste and struvite crystallization. The struvite crystallization and resulting conservation of nitrogen by addition of bone waste was confirmed by both reduction in ammonia loss and increased ammonia content in compost. However the level of struvite crystallization observed with bone waste addition may be less than the cases water-soluble phosphate salts were used.

Study on the characteristics of transition metals for TSSG process of SiC single crystal (SiC 단결정의 TSSG 공정을 위한 전이금속 특성 연구)

  • Lee, Seung-June;Yoo, Yong-Jae;Jeong, Seong-Min;Bae, Si-Young;Lee, Won-Jae;Shin, Yun-Ji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.55-60
    • /
    • 2022
  • In this study, a heat treatment experiment was conducted to select a new melt composition that can easily control the unintentionally doped nitrogen (N-UID) without degrading the SiC single crystal quality during TSSG process. The experiment was carried out for about 2 hours at a temperature of 1900℃ under Ar atmosphere. The used melt composition is based on either Si-Ti 10 at% or Si-Cr 30 at%, and also Co or Sc transition metals, which are effective for carbon solubility, were added at 3 at%, respectively. After the experiment, the crucible was cross-sectionally cut, and evaluated the Si-C reaction layer on the crucible-melt interface. As a result, with Sc addition, Si-C reaction layers uniformly occurred with a Si-infiltrated layer (~550 ㎛) and a SiC interlayer (~23 ㎛). This result represented that the addition of Sc is an effective transition metal with high carbon solubility and can feed carbon sources into the melt homogeneously. In addition, Sc is well known to have low reactivity energy with nitrogen compared to other transition metals. Therefore, we expect that both growth rate and Nitrogen UID can be controlled by Si-Sc based melt in the TSSG process.

Spikelet Number Estimation Model Using Nitrogen Nutrition Status and Biomass at Panicle Initiation and Heading Stage of Rice

  • Cui, Ri-Xian;Lee, Lee-Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.390-394
    • /
    • 2002
  • Spikelet number per unit area(SPN) is a major determinant of rice yield. Nitrogen nutrition status and biomass during reproductive stage determine the SPN. To formulate a model for estimating SPN, the 93 field experiment data collected from widely different regions with different japonica varieties in Korea and Japan were analyzed for the upper boundary lines of SPN responses to nitrogen nutrition index(NNI), shoot dry weight and shoot nitrogen content at panicle initiation and heading stage. The boundary lines of SPN showed asymptotic responses to all the above parameters(X) and were well fitted to the exponential function of $f(X)=alphacdot{1-etacdotexp(gamma;cdot;X)}$. Excluding the constant, from the boundary line equation, the values of the equation range from 0 to 1 and represent the indices of parameters expressing the degree of influence on SPN. In addition to those indices, the index of shoot dry weight increase during reproductive stage was calculated by directly dividing the shoot dry weight increase by the maximum value ($800 extrm{g/m}^{-2}$) of dry weight increase as it showed linear relationship with SPN. Four indices selected by forward stepwise regression at the stay level of 0.05 were those for NNI ($I_{NNI}_P$) at panicle initiation, NNI($I_{NNI}_h$) and shoot dry weight($I_{DW}_h$) at heading stage, and dry weight increase($I_{DW}$) between those two stages. The following model was obtained: SPN=48683ㆍ $I_{DWH}$$^{0.482}$$I_{NNIp}$$^{0.387}$$I_{NNIH}$$^{0.318}$$I_{DW}$ $^{0.35}$). This model accounted for about 89% of the variation of spikelet number. In conclusion this model could be used for estimating the spikelet number of japonica rice with some confidence in widely different regions and thus, integrated into a rice growth model as a component model for spikelet number estimation.n.n.