• Title/Summary/Keyword: nitrogen ($N_2$)

Search Result 4,403, Processing Time 0.037 seconds

Influence of Gravel Content and Nitrogen Application on Nitrogen Leaching by the Leachate and Chinese Cabbage Growth in Highland (자갈함량과 질소시비량이 고랭지 배추재배시 침투수에 의한 질소용탈 및 생육에 미치는 영향)

  • Park, Chol-Soo;Lee, Gye-Jun;Jung, Yeong-Sang;Joo, Jin-Ho;Hwang, Seon-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Continuous monocropping of Chinese cabbage in Gangwon highland increased gravel and sand contents due to surface soil erosion. Nutrient leaching and Chinese cabbage growth were investigated with different treatments of gravel contents and nitrogen application levels by using $0.5m^2$ Wagner pots. Gravel contents were 0, 10, 30, 50, 70, and 90%(w/w), nitrogen application levels were 60, 120, and 240 kg/ha, and manure compost application rate was 15 ton per hectare, respectively. Wagner pots were filled with loamy sand soil mixed with 5 cm-sized gravels. Fresh weight of Chinese cabbage was decreased as gravel contents in soil increased, and particularly severely decreased at 240 kg-N/ha. Yields of Chinese cabbage were remarkably decreased at the rate of 60 kg-N/ha with 30% gravel content and 120 kg-N/ha with 50% gravel content. Most of Chinese cabbages were severely wilted by heavy N application at the rate of 240 kg-N/ha in the middle of growth stages regardless of gravel contents, while about 50% of Chinese cabbage showed wilting symptom in the treatment of more than 50% of gravel contents and 120 kg-N/ha. N content in leachate increased as gravel content and N application increased. The relationship between gravel content and N contents showed linear regression: N in leachate = 0.014(gravel content) -0.039 (r = 0.961). Particularly, $NH_4-N$ contents in leachates with more than 30% gravel content and 240 kg-N/ha ranged from $139{\sim}339mg/L$. Chinese cabbage growth in loamy sand soil containing 30%, and 50% gravel contents could be adversely affected by N application at the rate of 240, and 120 kg-N/ha, respectively.

Biological nitrogen removal of ammonium-rich industrial wastewater by suspended bacterial growth

  • Im, Jun-Taek;Seong, Se-Hyeon;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.399-402
    • /
    • 2002
  • Industrial wastewater with high ammonium concentration was treated in batch biological systems which was a modified Ludzack- Ettinger process. Up to 78% conversion of $NH_4\;^+-N$ to $NO_x\;^--N$ was achieved in batch culture condition. Under anoxic condition with methanol as the carbon source, the denitrifiers decreased $NO_x\;^--N$ concentration from 608 mg/L to 5.6 mg/L in 22 d. As well as anoxic denitrification of $NO_x\;^-$ to $N_2$, dissimilatory nitrate reduction to ammonium also occurred under the condition as respiratory denitrification.

  • PDF

Biological Phosphorus and Nitrogen Removal in Anaerobic-Aerobic Activated Sludge Process (활성오니를 이용한 인 및 질소의 생물학적 제거)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.690-695
    • /
    • 1994
  • Simultaneous removal of phosphorus and nitrogen from wastewater was studied by the anaerobic-aerobic system of activated sludge. In the anaerobic stage, most of the influent glucose was removed and orthophosphate was released, when the nitrate and/or nitrite concentration in the wastewater was almost zero. The amount of the released phosphorus was found to be directly proportional to the amount of the removed glucose. When the ratio of phosphorus to glucose in the influent was less than 0.04, the phosphorus in the wastewater was almost completely removed during the aerobic state. Under the anaerobic condition, activated sludge released phosphate and excess removal of phosphate occurred during the aerobic condition. Namely, the stress received in anaerobic period stimulated the uptake of phosphorus in aerobic period. The amounts of phosphorus release in the anaerobic and uptake in the aerobic stage were less in proportional to the concentration of $NO_x-N$. Further, if the initial ratio of $NO_2-N$/glucose was less than 0.37, the inorganic nitrogen in the influent could be completely removed.

  • PDF

Production of Biofertilizer from the Rice Straw Mixed with Hen Feces with Thermoactinomycetes vulgaris (볏짚과 계분(鷄糞)의 혼합물로 부터 Thermoactinomycetes vulgaris에 의한 생물비료(生物肥料)의 제조(製調))

  • Choi, Moo-Young;Kang, Shin-Jyung;Lee, Jae-Sung
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.100-105
    • /
    • 1988
  • A biofertilizer, having been deordorized and showing promotive effect on plant growth, was manufactured from the rice straw and hen feces by use of Thermoactinomycetes vulgaris. This strain grew vigorously on rice straw mixed with unsterilized hen feces at $50^{\circ}C,\;pH\;8.0{\sim}8.5$ and moisture content of 60% and got rid hen feces of malodour during treatment. The growth of plant(Brassica raga var. previdis) was experimented on humic volcanic ash soil, using pot in thermostatically controlled greenhouse. The biofertilizer was applied as N-fertilizer and air-dried lien feces or ammonium sulfate were used for comparison with the biofertilizer. The effect on. plant growth was evaluated on the basis of the amount of nitrogen as fertilizer, under a loading of 0.1g N/pot, all samples showed a promotion effect of plant growth. But ammonium sulfate and air-dried hen feces inhibited plant growth at the nitrogen content over 0.2 and 0.4g N/pot, respectively, whereas the biofertilizer showed a good promotion effect on plant growth without growth inhibition even at nitrogen content of 0.8g N/pot.

  • PDF

Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest (산화가 소나무림의 토양과 유출수의 화학적 성질 및 식물량에 미치는 영향)

  • Choung, Yeon Sook;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 1987
  • In a red pine (Pinus densiflora) forest, changes of pH, electric conductivity, total carbon, total nitrogen, available phosphate and available potassium in soil and runoff have been studied at intervals for 1 year after early spring fire. Phytimasses of herb and shrub were measured following the current and the subsequent year. The pH, E.C., total nitrogen and phosphate of soil in burned site wee 1.1, 1.5, 1.6 and 2.0 times higher than in unburned site, respectively. But potassium showed no significant difference. A rise in pH, E.C., and total nitrogen in burned site were maintained throught the study period while phosphate maintained 4 months after the fire. The E.C., total carbon, $NO_2-N$ and $NH_4-N$ of runoff in burned site were 1.3, 1.3, 1.3 and 29.0 times higher than in unburned site, respectively, while $NO_3-N$ in unburned site was 4 times higher than in burned site. In burned site, phytomasses of herb and shrub were 148 and 33% of unburned site in a current year and 107 and 51% in a subsequent year, respectively. The considerable amount of increase in soil nutrient after the fire was conserved by the uptake of the fast regrowing plants and by the immobilization of $NH_4=N$.

  • PDF

Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461 (Pseudomonas elodea ATCC 31461에 의한 gellan 생산의 최적 배양조건)

  • Lim, Sung-Mi;Wu, Jian-Rong;Lee, Jin-Woo;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.705-711
    • /
    • 2003
  • The gellan was produced by Pseudomonas elodea under aerobic condition. In this study, the effects of inoculum size, carbon sources and concentration, nitrogen source, and C/N ratio on the cell growth and the production of gellan were evaluated. The maximum growth of P. elodea and gellan production was obtained at 5% (v/v) of inoculum size and glucose showed best results among 9 carbon sources tested. The maximum specific yield of 2.22 and productivity of $0.03 g/\ell$h were obtained at 1.0% (w/v) of glucose. The maximum gellan production was obtained at medium without ammonium nitrate. This indicates that nitrogen limitation is essential for the production of gellan. The highest cell and gellan production were obtained at 20 of C/N ratio.

Effect of Removing P.E film-Mulch at Budding Stage of Tobacco on the Change of Moisture and Mineral Content in Plow Layer Soil and Nutrient Uptake. (생육중반기 피복제거가 작토층의 수분 및 무기성분 변화와 연초양분흡수에 미치는 영향)

  • 홍순달;이윤환;김재정;육창수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.1
    • /
    • pp.69-78
    • /
    • 1986
  • This experiment was carried out to Investigate the environmental changes of rhizosphere, behavior of nutrient components in soul, and nutrients uptake and growth response of the tobacco plant in the condition that mulch as polyethylene film, had been removed on the ridge at the 50th day after transplanting in comparison with continuous mulching condition. The results obtained were as follows; 1. After rainfall, soil moisture content In the plow layer was greatly increased without mulch in comparison with that of the plot with mulch. As a result, leaf water potential of tobacco plant without mulch was higher than that with mulch. 2. Available nutrients such as $NH_4-N, \;NO_3-N$, and total salts in the plow layer of the plot without mulch tended to be Increased, and especially accumulated on the surface layer owing to the redistribution of soil water by rainfall during the latter growth stage after removing mulch. 3. Nutrients uptake by tobacco was much more enhanced in the plot without mulch and resulted in higher contents of total nitrogen, $NO_3-N, \;P_2O_5, \;and K_5O$ in the tobacco leaf Especially higher content of nitrogen caused the delay of maturity resulting In the increased of dry weight of top part of tobacco in the plot without mulch toned to be Increased in comparison with that in mulching condition. Content of total nitrogen, $NO_3-N$, and nicotine in flue-lured leaves was much higher in the plot without. mulch than in mulching condition, but lower content of reducing sugar in the plot without mulch resulted in lower quality of tobacco.

  • PDF

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

Transformation of Nitrogen Derived from Solid Piggery Manure in Soil under Aerobic or Anaerobic Incubation Condition (혐기(嫌氣) 및 호기조건하(好氣條件下)에서 토양처리(土壤處理)된 돈분(豚糞) 중(中) 질소형태변화(窒素形態變化))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 1993
  • The behaviors of inorganic nitrogen derived from solid animal waste in soil has been received too much concern partly because nitrate which occurred from nitrification can act as a pollutant to soil and groundwater and partly because the loss of nitrogen from surface soil by downward movement of water is disadvantageous in the view of plant nutrient. This present study was conducted to get fundamental imformations on nitrogen behavior and to provide improved basical concepts on the management of animal waste. Fresh or fermented pig manure was mixed with a sandy loam soil in the ratio of 2:1(soil:pig manure), packed into test tube and incubated at $30^+/-1^{\circ}C$ for 8 weeks under aerobic- or anaerobic condition. Sample tubes were taken at the one week interval and analyzed on pH, the amount of $CH_4$ produced under anaerobic condition and inorganic nitrogen. The pH of soil treated with fresh pig manure under anaerobic condition was lowered by 1.87 unit compared to that of under aerobic condition, but at the treatment with fermented pig manure, pH change was very little between aerobic and anaerobic condition. The coefficients of regressional equations which were obtained from pH and incubation time were -0.114 in fresh pig manure and -0.089 in fermented pig manure, and the extent of pH decrease due to incubation was greater in fresh pig manure than that of fermented pig waste. No differences in the amounts of $CH_4$ produced under anaerobic condition between fresh and fermented pig manure was observed until 3 weeks of incubation, however, after that the amount of $CH_4$ produced in fresh pig manure was abruptly increased and cumulative amont of $CH_4$ was reached 8.6 mole/g. K values on $CH_4$ production in fresh and fermented pig manure was 0.211 mole/g/day and 0.046 mole/g/day, respectively, for 5 weeks from the 3rd to the 8th week. $NH_4-N$ concentration at aerobic condition with fresh pig manure treatment was lowered by passing time of incubation, but $NO_3-N$ concentration was elevated from 11.2 ppm at initial state to 67.3 ppm after incubation and this trend on $NH_4-N$, $NO_3-N$ concentration was very similar to the treatment of fermented pig manure. While $NH_4-N$ concentration under anaerobic condition was greatly increased. $NO_3-N$ concentartion was not only very low but also no great changes, that was ranged from 4 to 8 ppm.

  • PDF

Comparison of Nitrogen Removal in Reed Wetlands with and Without Open Water Purifying Effluent from a Treatment Pond (하천수를 정화하는 갈대습지의 개수부에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • Nitrate($NO_3-N$) and total nitrogen(TN) removal by a reed wetland with open water(Wetland 1) was compared with that of a reed wetland without open water(Wetland 2) from March to October 2002. The two wetlands were 25mL by 6mW. An open water area, 3mL by 6mW was designed at the middle of Wetland 1. Reeds(Phragmites australis) were transplanted into the wetlands in June 2000. Water of Sinyang Stream flowing into the Kohung Estuarine Lake located in the southern part of Korea was pumped into a primary treatment pond, whose effluent was discharged into the secondary pond. Effluent from the secondary pond was funneled into the wetlands. Inflow into the wetlands averaged about 20.0$m^3$/day and their hydraulic retention time was approximately 1.5 days. Average $NO_3-N$ removal by Wetland 1 was 117.61mg/$m^2{\cdot}day$ and that by Wetland 2 was 106.39mg/$m^2{\cdot}day$. $NO_3-N$ removal efficiency of Wetland 1 and 2 was 37% and 34%, respectively. TN removal by Wetlands 1 and 2 averaged 226.80 and 214.54mg/$m^2{\cdot}day$, respectively. TN abatement efficiency of Wetland 1 was 43% and that of Wetland 2 was 40%. $NO_3-N$ removal efficiency of Wetland 1 was significantly higher(p=0.038) than Wetland 2. TN removal efficiency of Wetland 1 was also significantly higher(p=0.044) than Wetland 2. The wetland with open water was more efficient for removal of $NO_3-N$ and TN than one without.