• 제목/요약/키워드: nitrifiers

검색결과 32건 처리시간 0.027초

고정화 질화세균을 이용한 저농도 암모니아의 고도처리 (II) 초기 암모니아 농도, 온도 그리고 pH의 영향

  • 이정훈;김병진;이민수;나인걸;서근학
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.346-348
    • /
    • 2002
  • This study estimated the effect of influent TAN concentration. temperature and pH in the airlift bioreactor(aeration rate; 1.5 vvm, HRT 0.35hr) using immobilized nitrifiers by PVA. At the effect of influent TAN concentration, removal rate was increased with increasing it and removal efficiency maintained 93${\pm}$2%. The optimum temperature for nitrification was $30^{\circ}C$ and at this point. removal efficiency was 95.5${\pm}$1.5%. It was effective to nitrify at $10^{\circ}C$ of low temperature. In the pH range from 7 to 9 in the bioreactor. removal rate and removal efficiency was 310${\pm}$10 $g/m^3$ day and 94${\pm}$3%.

  • PDF

부직포 여과막 생물반응조에서 알칼리도가 질산화 성능에 미치는 영향 (Effects of Alkalinity on the Nitrification Capability of Nonwoven Fabric Filter Bioreactor)

  • 배민수;안윤찬;장명배;조윤경;조광명
    • 대한환경공학회지
    • /
    • 제29권7호
    • /
    • pp.783-792
    • /
    • 2007
  • 부직포 여과막 생물반응조의 질산화 성능을 파악하기 위하여 주입폐수의 암모니아 농도를 $54\sim1,400$ mg/L 그리고 알칼리도를 $43\sim10,480$ mg/L로 변화시키면서 약 11시간의 체류시간에서 641일간 실험을 실시한 결과 반응조의 MLSS농도는 최초의 2,650 mg/L 에서 830 mg/L까지 감소하였다가 최고 8,340 mg/L까지 증가함으로써 반응조의 용적부하는 $0.120\sim3.130$ kg $NH_3-N/m^3-day$의 범위에서 변하였으나 F/M 비는 $0.067\sim0.414$ kg $NH_3-N/kg$ MLSS-day의 적은 변화를 보였다. 각 실험단계별 평균 질산화 효율이 $35.2\sim100%$로서, 최대 질산화율은 2.970 kg $N/m^3-day$ 또는 0.489 g N/g MLVSS-day로 나타났다. MLVSS의 질산화미생물 분율은 최초의 7.1%에서 최고 100%까지 변하였으나 부직포 여과막에 형성된 생물막의 경우에는 2.2%의 매우 낮은 값을 보였다. 미생물 성장계수는 0.117 g VSS/g N removed로 그리고 알칼리도 소모량은 평균 7.08 g alkalinity/g NOx-N produced로 측정되었다. 이러한 실험결과로 보아 부직포 여과막 생물반응조가 고농도 암모니아 폐수의 질산화에 적합한 공법으로 판단된다.

호흡률법에 의한 하수의 질산화성 질소화합물 추정 (Estimation of Nitrifiable Nitrogen Compounds in Municipal Wastewater by Respirometry)

  • 김동한
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.295-303
    • /
    • 2007
  • Nitrogen compounds in municipal wastewater can be divided into biodegradable and nonbiodegradable fractions with biodegradability. Biodegradable nitrogen compounds can be removed through biological nitrification and denitrification processes, and nonbiodegradable nitrogen compounds affect the effluent quality of biological nutrient removal processes. The amount of nitrifiable nitrogen compounds, which are the sum of ammonia and biodegradable organic nitrogen, has been estimated by respirometry. Respirometry shows good estimation of the concentration of nitrifiable nitrogen when a synthetic sample of ammonium chloride is dosed. The estimated concentration of nitrifiable nitrogen compounds in municipal wastewater is close to ammonia concentration in municipal wastewater, but it is lower than that for the synthetic sample. If nitrogen assimilated into cell synthesis of nitrifiers and heterotrophs is considered, the total amounts of nitrifiable nitrogen compounds, which are nitrified and assimilated, could be more accurately estimated. The concentration of nitrifiable nitrogen compounds, which are biodegradable, is about 31 mg N/l, and this is 119% of ammonia and 94% of total nitrogen. Ammonia, nitrate, biodegradable organic nitrogen, and nonbiodegradable nitrogen are about 79%, 1%, 15%, and 5% of the total nitrogen in municipal wastewater, respectively.

동절기 하수처리장에서 효율적인 질소제거를 위한 최적 HRT조합 도출에 관한 연구 (A Study on Optimum HRT Combination for Efficient Nitrogen Removal at WWTP in Winter Days)

  • 길경익;이운길;노해연
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.165-169
    • /
    • 2008
  • 대부분의 하수처리장에서는 동절기에 수온저하로 인한 질산화 미생물의 활동저하 때문에 질소제거에 어려움을 많이 겪고 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 하수처리 시뮬레이션 프로그램인 GPS-X를 사용하여 각조의 HRT를 변화시켜 저 수온시 효율적인 질소제거를 위한 HRT의 조합을 도출하고자 하였다. 본 연구에서 도출한 최적의 HRT 조합은 0.3 hr/0.5 hr/1.36 hr/4.84 hr(PreAx/An/Ax/Ox)이고 이때의 T-N 제거율은 51.4%, $NH_4^+$-N는 57.3%의 제거율을 보였다.

호흡률에 기반한 연속회분식반응조의 포기공정 제어 (Aeration control based on respirometry in a sequencing batch reactor)

  • 김동한;김성홍
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

순환여과시스템에서 온도가 질산화 반응에 미치는 영향 (Effect of Temperature on Nitrification in a Recirculating Aquaculture System)

  • 박종호;이원호;연익준;조규석
    • 한국수산과학회지
    • /
    • 제37권1호
    • /
    • pp.13-17
    • /
    • 2004
  • The effects of temperature on nitrification of enriched nitrifiers were investigated by using kinetics and thermodynamics method through the batch test. Aquaculture recirculating water, which was sampled at Chung Cheong Buk-Do Inland Fisheries Research Institute, was analized to observe the characteristics of nitrification. Temporal variation of ammonium, nitrite and nitrate concentration was measured at batch experiments. Activation energy was calculated using Arrhenius equation with the oxidation rates of specific ammonium or nitrite ion. These oxidation rates were measured at temperature range of $6-35^{\circ}C$ and ammonium concentration range of 0.2-1.8 mg/L. Two distinct activation energy of Nitrosomonas sp. at temperature $6-15^{\circ}C\;and\;15-35^{\circ}C$ was 93.1 and 25.0 KJ/mol, respectively. Nitrate accumulation was observed at temperature over $15^{\circ}C.$

Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor

  • Tian, Hailong;Yan, Yingchun;Chen, Yuewen;Wu, Xiaolei;Li, Baoan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.373-384
    • /
    • 2016
  • The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes.

토양컬럼을 이용한 합성폐수중의 암모니아성질소 제거 (Removal of $NH_4-N$ from Synthetic Wastewater Using Soil Column)

  • 박상일;정경훈;김해연;백계진
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.280-286
    • /
    • 2005
  • The purpose of this investigation was to evaluate removal efficiency of $NH_4-N$ using the soil column. Soil, oyster shell and natural zeolite were used as a supporting media of soil column. Removal efficiencies of $NH_4-N$ were $35.9\%,\;41\%\;and\;93.4\%$ for the soil column packed with soil, natural $zeolite(20\%)$ and oyster $shell(20\%)$ at HRT of 72 hours, respectively. The addition of $20\%$ oyster shell to the soil accelerated nitrification in soil column. The influent ammonia nitrogen was mostly converted to nitrate nitrogen in the soil column and little ammonia nitrogen was found in the effluent. When the influent $NH_4-N$ concentration was 200 mg/l, the NIL-N removal was decreased at HRT of 48 hours, while nitrification was significantly increased after mechanical aeration. It was suggested that nitrification from higher $NH_4-N$ concentration was more affected by aeration in soil column process. The number of nitrifiers was approximately in a level of about $10^6\;MPN/g{\cdot}soil$ in the soil column mixed with oyster shell ($20\%$).

벌크의 산소농도가 폐기물(廢棄物)의 질산화(窒酸化) 및 탈질(脫窒)에 미치는 영향 -Tracer 로서의 15N 동위원소(同位元素) 및 FISH법(法)을 이용한 아산화질소발생원(亞酸化窒素發生源)의 규명(糾明)- (Effects of oxygen in the bulk of refuses on nitrification and denitrification -Study on sources of released nitrous oxide using 15N-isotope as a tracer and FISH method-)

  • 황선진;하나키 케이스케
    • 상하수도학회지
    • /
    • 제12권1호
    • /
    • pp.52-61
    • /
    • 1998
  • Nitrification and denitrification are important processes in the landfill site as they are deeply related with degradation and stabilization of refuse. Also nitrous oxide ($N_2O$) which is released from both nitrification and denitrification is known as greenhouse gas (GHG). The purpose of this study was to clarify the process by which $N_2O$ produced using $^{15}N$ isotope. Nitrate which was labeled to 10.08% with $^{15}KNO_3$ was used and $N_2O$ was analyzed with GC mass. Results was that even also when $O_2$ of bulk was 15%, $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ and $N_2$ was decreased and ratios of $N_2O$ in the reduced gases were increased. FISH technics also adaped to confirm whether which of nitrifiers existed in the substrates. When NEU was used of which the target was ammonia oxidizing bacteria, nitrifier was not detected at all. So it was confirmed that during the reaction denitrification was dominant process. Total bacteria distributions which were detected by EUB probe explained that as $O_2$ increase the number of bacteria also increase, but between the 10-15% of $O_2$ there was no any differences.

  • PDF

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • 제31권3호
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.