• Title/Summary/Keyword: nitric oxide synthase (NOS) inhibitor

Search Result 205, Processing Time 0.021 seconds

Angiogenic Effects of Korea Red Ginseng Water Extract in the In Vitro and In Vivo Models (홍삼수용성추출물이 혈관신생에 미치는 영향)

  • Rho, Euy-Joon;Ryu, Seong-Hun;Kim, Gyu-Min;Lee, Sang-Hyun;Yun, Young-Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.416-425
    • /
    • 2009
  • Angiogenesis is important for promoting cardiovascular disease, wound healing, and tissue regeneration. We here investigated the pharmacological effects of Korea red ginseng water extract (KRGE) on angiogenesis and its underlying signal mechanism. This study showed that KRGE increased in vitro proliferation, migration, and tube formation of human umbilical endothelial cells, as well as stimulated in vivo angiogenesis. KRGE-induced angiogenesis was accompanied by phosphorylation of ERK1/2, Akt, and endothelial nitric oxide synthase (eNOS) as well as an increase in NO production. Inhibition of PI3K activity by wortmannin completely inhibited KRGE-induced angiogenesis and phosphorylation of Akt, ERK1/2, and eNOS, indicating that PI3K/Akt activation is an upstream event of KRGE-mediated angiogenic pathway. The MEK inhibitor PD98059 completely blocked KRGE-induced angiogenesis and ERK phosphorylation without affecting Akt and eNOS activation. However, the eNOS inhibitor NMA effectively inhibited tube formation, but partially blocked proliferation and migration as well as ERK phosphorylation without altering Akt and eNOS activation, revealing that eNOS/NO pathway is in part involved in ERK1/2 activation. This study first demonstrated the critical involvement of both ERK1/2 and eNOS activation in KRGE-induced angiogenesis, which lie on downstream of PI3K/Akt. Thus, these results indicate that KRGE requires activation of both the PI3K/Akt-dependent ERK1/2 and eNOS signal pathways and their cross-talk for its full angiogenic activity.

Lipopolysaccharide Inhibits Proliferation of the Cultured Vascular Smooth Muscle Cells by Stimulating Inducible Nitric Oxide Synthase and Subsequent Activation of Guanylate Cyclase

  • Choi, Hyoung-Chul;Lee, Sang-Gon;Kim, Jong-Ho;Kim, Joo-Young;Sohn, Uy-Dong;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2001
  • This study was undertaken to investigate the mechanism of lipopolysaccharide (LPS) and nitric oxide (NO) as a regulator of vascular smooth muscle cell (VSMC) proliferation. VSMC was primarily cultured from rat aorta and confirmed by the immunocytochemistry with anti-smooth muscle myosin antibody. The number of viable VSMCs were counted, and lactate dehydrogenase (LDH) activity was measured to assess the degree of cell death. Concentrations of nitrite in the culture medium were measured as an indicator of NO production. LPS was introduced into the medium to induce the inducible nitric oxide synthase (iNOS) in VSMC, and Western blot for iNOS protein and RT-PCR for iNOS mRNA were performed to confirm the presence of iNOS. Inhibitors of iNOS and soluble guanylate cyclase (sGC), sodium nitroprusside (SNP) and L-arginine were employed to observe the action of LPS on the iNOS-NO-cGMP signalling pathway. LPS and SNP decreased number of VSMCs and increased the nitrite concentration in the culture medium, but there was no significant change in LDH activity. A cell permeable cGMP derivative, 8-Bromo-cGMP, decreased the number of VSMCs with no significant change in LDH activity. L-arginine, an NO substrate, alone tended to reduce cell count without affecting nitrite concentration or LDH level. Aminoguanidine, an iNOS specific inhibitor, inhibited LPS-induced reduction of cell numbers and reduced the nitrite concentration in the culture medium. LY 83583, a guanylate cyclase inhibitor, suppressed the inhibitory actions of LPS and SNP on VSMC proliferation. LPS increased amounts of iNOS protein and iNOS mRNA in a concentration-dependent manner. These results suggest that LPS inhibits the VSMC proliferation via production of NO by inducing iNOS gene expression. The cGMP which is produced by subsequent activation of guanylate cyclase would be a major mediator in the inhibitory action of iNOS-NO signalling on VSMC proliferation.

  • PDF

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

Inhibitory Effect of Chan-Su on the Secretion of PGE2 and NO in LPS-stimulated BV2 Microglial Cells

  • Kim, Min-Hee;Lyu, Ji-Hyo;Lyu, Sun-Ae;Hong, Sang-Hoon;Kim, Won-Il;Yoon, Hwa-Jung;Ko, Woo-Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1315-1321
    • /
    • 2008
  • Chan-Su (Venenum bufonis) has long been for a variety of other purposes including treatment of inflammation in the folk medicine recipe. Since nitric oxide (NO) is one of the major inflammatory parameters, we first studied the effects of Chan-Su on NO production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, Chan-Su inhibited the secretion of NO in BV2 microglial cells, without affecting cell viability, The protein level of inducible nitric oxide synthase (iNOS) was decreased by Chan-Su, And Chan-Su also inhibited production of prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2. Proinflammatory cytokines, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$ and IL-12, were inhibited by Chan-Su in a dose-dependent manner. And Chan-Su inhibited the degradation of ${IkB-\alpha}$, which was considered to be inhibitor of nuclear factor $(NF)-{\kappa}B$, one of a potential transcription factor for the expression of iNOS, COX-2 and proinflammatory cytokines. These results suggest that Chan-Su could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $I{\kappa}B-{\alpha}$ degradation.

Tribulus terrestris Suppresses the Lipopolysaccharide-Induced Inflammatory Reaction in RAW264.7 Macrophages through Heme Oxygenase-1 Expressions

  • Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • The fruit of Tribulus terrestris L. (Zygophyllaceae) is an important source of traditional Korean and Chinese medicines. In this study, NNMBS223, consisting of the ethanol extract of T. terrestris, showed potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS223 in suppressing the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and production of iNOS-derived nitric oxide (NO), COX-2-derived prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated macrophages. In addition, NNMBS223 induced expression of heme oxygenase (HO)-1 through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. The effects of NNMBS223 on LPS-induced production of NO and PGE2 were partially reversed by the HO activity inhibitor tin protoporphyrin (SnPP). These findings suggest that Nrf2-dependent increases in expression of HO-1 induced by NNMBS223 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.

Inducible nitric oxide synthase is involved in neuronal death induced by trimethyltin in the rat hippocampus (Trimethyltin에 의한 랫드 해마의 신경세포 사멸과 iNOS의 연관성)

  • Jang, Sukwon;Choi, Sungyoung;Park, Changnam;Ahn, Meejung;Shin, Taekyun;Kim, Seungjoon
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • Trimethyltin chloride (TMT) has been used as a neurotoxin for inducing brain dysfunction and neuronal death. Neuronal death in the hippocampus by TMT may generate excessive nitric oxide, but there are few studies about nitric oxide synthase enzyme involved in the synthesis of nitric oxide. The purpose of present study is to analyze the TMT toxicity in each region of rat hippocampus. To evaluate the involvement of nitric oxide, we analyzed the effects of aminoguanidine known as a selective inhibitor for inducible nitric oxide synthase on behavioral changes and the hippocampus of rat by TMT toxicity. 6-week-old male Sprague-Dawley rats were administered with a single dose of TMT (8 mg/kg b.w., i.p.) and the control group was similarly administered with distilled water. TMT + aminoguanidine-treated groups were administered with aminoguanidine (10 mg/kg or 100 mg/kg b.w., i.p.) for 3 days prior to TMT injection. The rats were sacrificed 2 days after TMT administration. In the TMT-treated group, a number of cell losses were seen in CA1, CA3 and the dentate gyrus. In the TMT + aminoguanidine-treated group, neuronal death was seen in CA1 and CA3, but reduced in the dentate gyrus compared to the TMT-treated group. Western blot analysis showed that cleaved caspase-3 expression was increased in the TMT-treated group compared to the control group. However, the expression significantly declined in the TMT + aminoguanidine-treated group. The present findings suggest that inducible nitric oxide synthase is involved in neuronal death induced by TMT.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Inhibitory Effect of Farfarae Flos Water Extract on COX-2, iNOS Expression and Nitric Oxide Production in lipopolysaccharide - activated RAW 264.7 cells

  • Yoon Tae Gyoung;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu;Kim Sang Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.908-913
    • /
    • 2004
  • Farfrae Flos has been clinically used for the treatment of asthma in traditional oriental medicine. There is lack of studies regarding the effects of Farfrae Flos on the immunological activities. The present study was conducted to evaluate the effect of Farfrae Flos on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, Farfrae Flos water extract inhibited nitric oxide production in a dose-dependent manner and abrogated inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Farfrae Flos water extract did not affect on cell viability. To investigate the mechanism by which Farfrae Flos water extract inhibits iNOS and COX-2 gene expression, we examined the on the phospholylation of inhibitor κBα and production of TNF-α, IL-1β and IL-6. Results provided evidence that Farfrae Flos inhibited the production of interleukin-1β (IL-1β) and the activation of phospholylation of inhibitor κBα in Raw 264.7 cells activated with LPS. These findings suggest that Farfrae Flos can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.