• Title/Summary/Keyword: nitrate removal

Search Result 402, Processing Time 0.024 seconds

Improved Electricity Generation by a Microbial Fuel Cell after Pretreatment of Ammonium and Nitrate in Livestock Wastewater with Microbubbles and a Catalyst

  • Jang, Jae Kyung;Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1965-1971
    • /
    • 2016
  • Livestock wastewater containing high concentrations of ammonium and nitrate ions was pretreated with microbubbles and an Fe/MgO catalyst prior to its application in microbial fuel cells because high ion concentrations can interfere with current generation. Therefore, tests were designed to ascertain the effect of pretreatment on current generation. In initial tests, the optimal amount of catalyst was found to be 300 g/l. When 1,000 ml/min $O_2$ was used as the oxidant, the removal of ammonium- and nitrate-nitrogen was highest. After the operating parameters were optimized, the removal of ammonium and nitrate ions was quantified. The maximum ammonium removal was 32.8%, and nitrate was removed by up to 75.8% at a 500 g/l catalyst concentration over the course of the 2 h reaction time. The current was about 0.5 mA when livestock wastewater was used without pretreatment, whereas the current increased to $2.14{\pm}0.08mA$ when livestock wastewater was pretreated with the method described above. This finding demonstrates that a 4-fold increase in the current can be achieved when using pretreated livestock wastewater. The maximum power density and current density performance were $10.3W/m^3$ and $67.5W/m^3$, respectively, during the evaluation of the microbial fuel cells driven by pretreated livestock wastewater.

Comparisons of Nitrogen and Phosphorus Removal Capacity of Four Macrophytes

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Kim, Jong-Wook;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.163-167
    • /
    • 2000
  • To evaluate the water purification capacity of 4 emergent macrophytes in 4 tributaries of Mankyung River, nitrate reductase activity (NRA) and nutrient removal capacity were determined. Higher NRA occurred in emergent macrophytes such as Persicaria thunbergii and Oenanthe iavanica with 7.8 and 5.4 ${\mu}$moi NO$_2$ g$^{-1}$d.wt. h$^{-1}$. respectively. The nitrogen removal capacity of emergent macrophytes displaying higher NRA fell within the range of 0.85 to 1.95 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Persicaria thunbergii > Oenanthe iavanica > Zizania latifolia. The phosphorus removal capacity was within the range of 0.07 to 0.12 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Oenanthe iavanica > Persicaria thunbergii > Zizania latifolia. In all the domestic, industrial and agricultural wastewaters, Phragmites communis showed the highest nitrogen and phosphorus removal capacity; 1.36 and 0.0088 mg g$^{-1}$d.wt. day$^{-1}$ respectively. Among the 4 macrophytes. Phragmites communis was the most suitable species for water purification in 4 tributaries of Mankyung River.

  • PDF

Nitrate Removal and Recycling Technique (질산 제거 및 재이용 기술)

  • Lee, Kyoung Hee;Sim, Sang Jun;Choi, Guang Jin;Kim, Young Dae;Woo, Kyoung ja;Cho, Young Sang;Choi, Eui-So
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • A new process has been developed for nitrate and other salts removals from polluted waters. Alumina cement and calcium oxide served as precipitating agents to remove nitrate with stirring at basic pH. Low content of alumina in the commercialized alumina cements resulted in a increasing in nitrate removal yield. It is found that the compositions of aluminium and calcium are the most important factors in successful nitrate insolubilization. In order to remove high concentration of nitrate in polluted water, multi-stage precipitation was found to be very effective. Sulfate, chloride, and phosphate ions as well as nitrate were also removed by the precipitated reaction. After precipitation, post-treatments including Na2CO3 addition and neutralization with acid alleviated the level of aluminium and calcium in the treated water.

  • PDF

A Study on the Removal of Nitrate Nitrogens by Redox Reaction of Zinc Ball (아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구)

  • Kim, Joon Hwan;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.487-494
    • /
    • 2017
  • Since nitrate nitrogen is quite stable in aqueous solution, considerable skill is required to remove it. Low concentrations of nitrate nitrogen are easily removed, while high concentrations of nitrate nitrogen are difficult to remove. This study is to show that nitrate nitrogen in the form of gaseous nitrogen can be removed by using zinc ball with a diameter of about 3mm and to test the removal characteristics of nitrate nitrogen under various reaction conditions. As a result of this study, the treatment efficiency of nitrate nitrogen by continuous treatment with zinc ball was about 80%. However, there is a problem that the wastewater must be maintained in an acidic atmosphere of about pH 2, and the treated wastewater must be neutralized and discharged.

Basic Study for Development of Denitrogenation Process by Ion Exchange(V) -Synthesis of Nitrate-Selective Ion Exchange Resines- (이온교환법에 의한 탈질소 공정개발의 기초연구(V) -질산성 질소 선택적인 이온교환수지의 합성-)

  • 이동환;김승일;전진희;박찬영;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [$NR_3=NE_{t3} 1, N{(C_2 H_4 H_3)}_32]$in ethanol, while commercial resin has $NMe_3$ as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.

  • PDF

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Electrokinetic Restoration of Saline Soil Accumulated with Nitrate and Sulfate (질산염 및 황산염 집적 염류 토양의 전기역학적 개량)

  • Cho, Jung-Min;Jo, Sung-Ung;Kim, Do-Hyung;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • The electrokinetic transport characteristics of salts were investigated using nitrate and sulfate accumulated saline greenhouse soil. Within 8 days, 95% of nitrate was removed from the soil, while sulfate removal was 19% for 8 days. The low removal of sulfate came from adsorption reaction on the soil particles or organic matter and precipitation with calcium. Divalent cations such as calcium and magnesium were transported toward cathode via electromigration, and most monovalent cation such as potassium was removed. The pattern of residual electrical conductivity was similar with that of sulfate. Based on the results, electrokinetic technique is effective to restore nitrate-accumulated saline soil, but is not effective to restore sulfate-accumulated soil.

A Study on Equilibrium of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ in Urban Atmosphere (도시 대기중에서 $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$의 평형에 관한 연구(II))

  • 천만영;이영재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.154-159
    • /
    • 1993
  • Theoretical prediction of the equilibrium of temperature and relative humidity dependance involving $HNO_{3(g)}-NH_{3(g)}$ and $NH_4NH_{3(s, aq)}$ was compared with atmospheric measurement of particulate nitrate$(NO_3^-)$, Ammonia-Nitric Acid partial pressure product $([$NH_{3(g)}][HNO_{3(g)}]ppb^2$) by a triple filter pack sampler from Oct 1991 to July 1992. The measured $HNO_3NH_3$ concentration product K was greater than equilibrium constant $K_p$ calculated from thermodynamic data of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ during fall, winter and spring. But K was lower than $K_p$ in summer. K was greater than $K_p$ as the result of supersaturation by air pollution, particularly anthropogenic $NH_3$.The reason of $K < K_p$ was due to removal of particulate nitrate$(NO_3^-)$ by rainout and washout. $NH_4NO_3$ which consists mainly of particulate nitrate is formed by reaction between $HNO_3$ and $NH_3$. As a result of the removal of particulate nitrate$(NO_3^-)$ by rainout and washout, concentrations of $HNO_3$ and $NH_3$ are decreased by equilibrium transfer(Le Chatelier's Law) in atmosphere.

  • PDF