• 제목/요약/키워드: nitrate:ammonium ratio

검색결과 87건 처리시간 0.024초

Ammonium and Nitrate Uptake and Utilization Efficiency of Rice varieties as Affected by Different N-Concentrations

  • Choi Kyung-Jin;Swiader John M.
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.22-27
    • /
    • 2005
  • To find out the optimum mixture ratio of ammonium and nitrate on rice plant, 4 rice varieties were examined during 14days after transplanting in hydroponics with the different ratio of ammonium to nitrate(100 : 0, 75: 25,50: 50, 25: 75 and 0: 100). The highest N uptake from solution and the maximum plant dry weight were $60\~70\%$ ammonium and $30\~40\%$ nitrate mixture treatment both in Japonica and Tongil type rice plants. And with the same varieties N-uptake and N use-efficiency were compared between 10.0 mM and 1.0 mM nitrogen using $70\%$ ammonium and $30\%$ nitrate for 24 days after transplanting. Rice plants absorbed more nitrogen$(131\~145\%)$ in 10.0mM than 1.0mM treatment but accumulated N in rice plants were almost the same in both treatment. Among the tested rice cultivars, dry matter production and total accumulative nitrogen in rice plants were much high in Tongil type than japonica type rice cultivars. N-recovery ratios of rice plants from uptake N were $90.8-99.0\%$ in low concentration N solution(1.0 mM), but $69.4-81.7\%$ were observed in high concentration N solution(10.0 mM). It means that suppling low concentration N steadily will be better to prevent loss of N without reducing of growth in rice plants.

Pseudomonas oleovorans의 유가식 배양에 의한 medium chain length Polyhydroxyalkanoates (MCL-PHA) 생산

  • 김범수;임희연
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.207-210
    • /
    • 2000
  • P. oleovorans의 유가식 배양에서 탄소원으로 octanoic acid, 질소원으로 $NH_4NO_3$를 이용한 혼합기질을 배양액의 pH 변화에 따라 공급하는 pH-stat 기질공급전략을 개발하였다. 공급기질의 탄소원/질소원 비 (C/N 비)를 변화시킴으로써 최종 균체농도, PHA 농도, PHA 함량 등을 변화시킬 수 있었으며, 최대 균체농도는 C/N 비가 10 (g octanoic acid/g $NH_4NO_3$)일 때 65 g/L, 최대 PHA 농도는 C/N 비가 20일 때 41 g/L, 최대 PHA 함량은 C/N 비가 20일 때 75%였으며 최대 PHA 생산성은 C/N 비가 10일 때 1.03 g/L/h였다.

  • PDF

Cucumber Growth and Nitrogen Uptake as Affected by Solution Temperature and NO3-:NH4+ Ratios during the Seedling

  • Yan, Qiu-Yan;Duan, Zeng-Qiang;Li, Jun-Hui;Li, Xun;Dong, Jin-Long
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.393-399
    • /
    • 2013
  • The effect of solution temperature and nitrogen form on cucumber (Cucumis sativus L.) growth, photosynthesis and nitrogen metabolism was investigated in hydroponic culture. Cucumber plants were grown for 35 days in a greenhouse at three constant solution temperatures ($15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$) within a natural aerial temperature ($15-30^{\circ}C$). Four nitrate:ammonium ($NO{_3}^-:NH{_4}^+$) ratios (10:0, 8:2, 5:5, and 2:8 $mmol{\cdot}L^{-1}$) at constant nitrogen (N) concentration of $10mmol{\cdot}L^{-1}$ were applied within each solution temperature treatment. Results showed an increasing solution temperature enhanced plant growth (height, dry weight, and leaf area) in most N treatments. Dry weight accumulation was greatest at the 10:0 $NO{_3}^-:NH{_4}^+$ ratio in the $15^{\circ}C$ solution, the 5:5 ratio in the $20^{\circ}C$ solution and the 8:2 ratio in the $25^{\circ}C$ solution. Photosynthetic rate (Pn) response to solution temperature and $NO{_3}^-:NH{_4}^+$ ratio was similar to that of plant growth. Probably, the photosynthate shortage played a role in the reduced biomass formation. Increasing solution temperature enhanced the nitrate reductase (NR) activity, and further reduced shoots nitrate content. Our results indicate that the optimal ratio of nitrate to ammonium that promotes growth in hydroponic cucumber varies with solution temperature.

제주시 도심지역에서 여름과 겨울의 PM2.5 이온조성 특성 (Ionic Compositions of PM2.5 during Summer and Winter in the Downtown Area of Jeju City in Jeju Island)

  • 이기호;허철구
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.447-456
    • /
    • 2017
  • Chemical properties of aerosols were investigated by analyzing the inorganic water-soluble content in $PM_{2.5}$ collected in the downtown area of Jeju City in Jeju Island. Due to an increase in both the number of visiting tourists and the size of local population, the number of cars in this area is increasing, causing an increase in $PM_{2.5}$. Eight $PM_{2.5}$-bound major inorganic ions were analyzed during the summer and winter periods. The water-soluble inorganic component represents a significant fraction of $PM_{2.5}$. In particular, secondary inorganic aerosols contribute 36.2% and 47.5% of $PM_{2.5}$ mass in summer and winter, respectively. Nitrate concentrations increase for $[NH_4{^+}]/[SO_4{^{2-}}]$>1.5, and excess ammonium, which is necessary for ammonium nitrate formation, is linearly correlated with nitrate. These results are clearly observed during the winter because conditions are more conducive to the formation of ammonium nitrate. A significant negative correlation between Nitrogen Oxidation Ratio (NOR) and temperature was observed. The obtained results can be useful for a better understanding of the aerosol dynamics in the downtown area in Jeju City.

Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea

  • Kim, Hocheol;Jo, Bok Yeon;Kim, Han Soon
    • ALGAE
    • /
    • 제32권4호
    • /
    • pp.275-284
    • /
    • 2017
  • Microcystis aeruginosa causes harmful algal blooms in the Nakdong River of Korea. We studied the effect of different concentrations and ratios of ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), and phosphate ($PO{_4}^{3-}$) on growth of this species in BG-11 medium: each nutrient alone, $NO_3{^-}:NH_4{^+}$ ratio, the N : P ratio with fixed total N (TN), and the N : P ratio with fixed total P (TP). The single nutrient experiments indicated that M. aeruginosa had the highest growth rate at $NH_4{^+}$ and $NO_3{^-}$ concentrations of $500{\mu}M$, and at a $PO{_4}^{3-}$ concentration of $5{\mu}M$. The $NO_3{^-}:NH_4{^+}$ ratio experiments showed that M. aeruginosa had the highest growth rate at a ratio of 1 : 1 when TN was $100{\mu}M$ and $250{\mu}M$, and the lowest growth rate at a ratio of 1 : 1 when the TN was $500{\mu}M$. The N : P ratio with fixed TN experiments indicated that M. aeruginosa had the highest growth rates at 50 : 1, 20 : 1, and 100 : 1 ratios when the TN was 100, 250, and $500{\mu}M$, respectively. In contrast, the N : P ratio with fixed TP experiments showed that M. aeruginosa had the highest growth rates at 200 : 1 ratio at all tested TP concentrations. In conclusion, our results imply that the $NO_3{^-}:NH_4{^+}$ ratio and the $PO{_4}^{3-}$ concentration affect the early stage of growth of M. aeruginosa. In particular, our results suggest that the maximum growth of M. aeruginosa is not simply affected by the $NO_3{^-}:NH_4{^+}$ ratio and the N : P ratio, but is determined by the TN concentration if a certain minimum $PO{_4}^{3-}$ concentration is present.

암모늄태와 질산태 질소가 담배와 콩의 조직배양시 생육 및 질소대사 효소의 활성에 미치는 영향 (Effects of Ammonium, and Nitrate on Callus Growth of Tobacco and Soybean and Activities of Nitrogen Metabolizing Enzymes)

  • 박혜선;설종호;장매희
    • 식물조직배양학회지
    • /
    • 제25권1호
    • /
    • pp.57-61
    • /
    • 1998
  • 본 실험은 질소원처리가 식물의 생육 및 질소대사에 미치는 영향을 규명하고자 조직배양을 실시하였으며 공시재료로는 담배 'NC 2326'와 대두 '단엽콩'을 사용하였다. 배지내 질소원의 종류와 그 비율을 달리했을 때 callus의 생육, 전 질소, 단백질 함량 그리고 nitrate reductase와 glutamine synthase의 활성 변화를 조사하였다. 단엽콩의 조직배양시 callus증식은 2:1처리구와 암모늄태 질소만 공급한 배지에서 높았던 반면 질산태만 공급한 경우 쉐는 callus증식이 저조하였다. 한편 담배는 질산태와 암모늄태 질소를 2:1로 혼용한 구가 callus증식이 좋았고, 암모늄태 질소단용구에서 저조하였으며, 질산태 질소단용구의 callus생육이 양호하였다. Callus내 전질소함량은 담배의 경우 배지내 질산태 질소가 많을수록 증가되어 질산태 질소단용구에서 가장 많았으며 암모늄태 질소단용구에서 가장 적었다. 한편 단엽콩은 이와 반대의 경향으로 암모늄태 질소단용구에서 가장 많았으며 질산태 질소단용구에서 가장 적었다. Callus의 nitrate reductase의 활성을 보면 담배는 질산태 질소단용구에서 활성이 높았으며 암모늄태 질소단용구에서 활성이 낮은 반면 단엽콩은 2:1 처리구에서 활성이 높았고 생육이 부진했던 질산태 질소단용구에서 현저하게 낮았다. Glutamine synthetase의 활성은 단엽콩, 담배 모두 질산태 질소단용구에서 활성이 높았으며 암모늄태 질소단용구에서 활성이 낮았다.

  • PDF

요소(尿素)와 질산(窒酸)암모늄(질안(窒安))의 시용(施用)이 토양가리(土壤加里)의 이용(利用) 및 배추의 수량(收量)에 준 영향(影響) (Effect of Urea and Ammonium Nitrate Application on the Use of Soil Born Potash and Yield of Chinese Cabbage)

  • 오왕근;김성배
    • 한국토양비료학회지
    • /
    • 제18권1호
    • /
    • pp.63-66
    • /
    • 1985
  • 요소(尿素)와 질산(窒酸)암모늄(질안(窒安))이 토양가리(土壤加里)의 이용율(利用率) 및 배추의 수량(收量)에 주는 영향(影響)을 밝히고자 포트시험(試驗)을 한 결과(結果)는 다음과 같다. 1. 질안(窒安)은 요소(尿素)보다 토양(土壤)의 pH를 낮추고 배추에 대(對)한 토양가리(土壤加里)의 이용도(利用度)를 높여서 무가리(無加里) 재배(栽培)에서의 배추의 수량(收量)을 높였다. 2. 배추속(가식부(可食部))을 충실(充實)히 하는데 질안(窒安)은 요소(尿素)보다 더 효과적(效果的)인것 같고 동효과(同效果)는 가리(加里)가 병용(倂用)되므로서 더 현저(顯著)해졌다. 3. 배추의 가식부수량(可食部收量)은 건조(乾燥)배추의 N/K 당량비(當量比)가 낮을수록 많았으며 동비(同比) 약(約) 1.4에서 높은 수량(收量)이 얻어졌다. 이때 건조(乾燥)배추의 K-함량(含量)의 1.2~1.3me/g이었다.

  • PDF

주목 (Taxus cuspidata) 세포배양에서 질소원, 인산, 세포고정화가 Taxol 생산에 미치는 영향 (Effect of Nitrogen, Phosphate and Cell Immobilization on Taxol Production from Cell Cultures of Taxus cuspidata)

  • 박종화;정인식
    • Applied Biological Chemistry
    • /
    • 제38권4호
    • /
    • pp.308-312
    • /
    • 1995
  • 주목 (Taxus cuspidata) 세포배양을 이용하여 modified B5 배지중의 질소원, 인산 그리고 세포 고정화가 세포생장과 taxol 생산에 미치는 영향을 살펴보았다. Nitrate와 ammonium의 비는 세포생장 및 taxol 생산에 있어 중요한 인자임을 알수 있었고 비값이 1인 경우는 modified B5 배지 조성중 원래 비값인 20에 비해 taxol 생산을 10배나 증가시켰다. 인산의 농도를 감소시킨 경우 세포생장은 저하되었지만 taxol 생산은 현저하게 증가하였다. 고정화세포는 ${\sim}120\;g/l$의 taxol을 생산하였다.

  • PDF

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • 제4권4호
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

Optimization of C/N ratio for production of heteropolysaccharide-7 by Beijerinckia indica

  • 김현숙;이남규;이유정;신명교;정정한;이진우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.384-387
    • /
    • 2000
  • Heteropolysaccharide-7 (PS-7) was produced by Beijerinckia indica HS-2001 under aerobic condition. Production of PS-7 was investigated under various ratios of glucose as carbon source to ammonium nitrate as nitrogen source. Maximal production of PS-7 was 7.13 g/l when concentrations of glucose and ammonium nitrate were 10 g/l and 0.3 g/l, respectively. But its conversion rate from glucose was as low as 7 %. The highest conversion rate of PS-7 was 46% when those of glucose and ammonium nitrate were 1.0 g/l and 0.3 g/l, respectively.

  • PDF