Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.10.23

Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea  

Kim, Hocheol (School of Life Science, Kyungpook National University)
Jo, Bok Yeon (School of Life Science, Kyungpook National University)
Kim, Han Soon (School of Life Science, Kyungpook National University)
Publication Information
ALGAE / v.32, no.4, 2017 , pp. 275-284 More about this Journal
Abstract
Microcystis aeruginosa causes harmful algal blooms in the Nakdong River of Korea. We studied the effect of different concentrations and ratios of ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), and phosphate ($PO{_4}^{3-}$) on growth of this species in BG-11 medium: each nutrient alone, $NO_3{^-}:NH_4{^+}$ ratio, the N : P ratio with fixed total N (TN), and the N : P ratio with fixed total P (TP). The single nutrient experiments indicated that M. aeruginosa had the highest growth rate at $NH_4{^+}$ and $NO_3{^-}$ concentrations of $500{\mu}M$, and at a $PO{_4}^{3-}$ concentration of $5{\mu}M$. The $NO_3{^-}:NH_4{^+}$ ratio experiments showed that M. aeruginosa had the highest growth rate at a ratio of 1 : 1 when TN was $100{\mu}M$ and $250{\mu}M$, and the lowest growth rate at a ratio of 1 : 1 when the TN was $500{\mu}M$. The N : P ratio with fixed TN experiments indicated that M. aeruginosa had the highest growth rates at 50 : 1, 20 : 1, and 100 : 1 ratios when the TN was 100, 250, and $500{\mu}M$, respectively. In contrast, the N : P ratio with fixed TP experiments showed that M. aeruginosa had the highest growth rates at 200 : 1 ratio at all tested TP concentrations. In conclusion, our results imply that the $NO_3{^-}:NH_4{^+}$ ratio and the $PO{_4}^{3-}$ concentration affect the early stage of growth of M. aeruginosa. In particular, our results suggest that the maximum growth of M. aeruginosa is not simply affected by the $NO_3{^-}:NH_4{^+}$ ratio and the N : P ratio, but is determined by the TN concentration if a certain minimum $PO{_4}^{3-}$ concentration is present.
Keywords
ammonium; culture study; Microcystis aeruginosa; nitrate; phosphate;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Dolman, A. M., Rucker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U. & Wiedner, C. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7:e38757.   DOI
2 Dortch, Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61:183-201.   DOI
3 Dugdale, R. C., Wilkerson, F. P., Hogue, V. E. & Marchi, A. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar. Coast. Shelf Sci. 73:17-29.   DOI
4 Flores, E., Frías, J. E., Rubio, L. M. & Herrero, A. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117-133.   DOI
5 Flynn, K. J., Fasham, M. J. R. & Hipkin, C. R. 1997. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352:1625-1645.   DOI
6 Guillard, R. R. L. 1973. Methods for microflagellates and nanoplankton. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 66-85.
7 Hammed, A. M., Prajapati, S. K., Simsek, S. & Simsek, H. 2016. Growth regime and environmental remediation of microalgae. Algae 31:189-204.   DOI
8 Jacobson, L. & Halmann, M. 1982. Polyphosphate metabolism in the blue-green alga, Microcystis aeruginosa. J. Plankton Res. 4:481-488.   DOI
9 Jung, H. -Y. & Cho, K. -J. 2003a. Environmental conditions of sediment and bottom waters near sediment in the downstream of the Nagdong River. Korean J. Limnol. 36:311-321.
10 Jung, H. -Y & Cho, K. -J. 2003b. SOD and inorganic nutrient fluxes from sediment in the downstream of the Nagdong River. Korean J. Limnol. 36:322-335.
11 Lee, O. H. & Cho, K. J. 2006. Nitrogen and phosphorus uptake and growth kinetics of Microcystis aeruginosa cultured under chemostats. Korean J. Limnol. 39:119-130.
12 Kim, H. -S. & Hwang, S. -J. 2004. Effects of nutrients and N/P ratio stoichiometry on phytoplankton growth in an eutrophic reservoir. Korean J. Limnol. 37:36-46.
13 Kim, J. -E., Park, J. -W., Jo, K. -A. & Kim, S. -K. 2013. Variances of environmental factors during water bloom by Microcystis aeruginosa (Kutzing) Kutzing in Ilwol Reservoir, Suwon. Korean J. Ecol. Environ. 46:265-275.
14 Lee, C. S., Ahn, C. -Y., La, H. -J., Lee, S. & Oh, H. -M. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J. Environ. Biol. 31:233-242.   DOI
15 Lee, T. -G., Park, S. -W., Yu, T. -S. & Kim, J. 1998. The growth and coagulation characteristics of Microcystis aeruginosa during water treatment processes. J. Korea Technol. Soc. Water Waste Water Treat. 6:33-42.
16 Levasseur, M., Thompson, P. A. & Harrison, P. J. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595.   DOI
17 Kim, E. H. & Kang, S. K. 1993. The effect of heavy metal ions on the growth of Microcystis aeruginosa. J. Korean Soc. Water Qual. 9:193-200.
18 Lin, S., Litaker, R. W. & Sunda, W. G. 2016. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52:10-36.   DOI
19 Liu, X., Lu, X. & Chen, Y. 2011. The effects of temperature and nutrient ratios on Microcystis bloom in Lake Taihu, China: an 11-year investigation. Harmful Algae 10:337-343.   DOI
20 Nalewajko, C. & Murphy, T. P. 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2:45-48.   DOI
21 Rückert, G. V. & Giani, A. 2004. Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Rev. Bras. Bot. 27:325-331.
22 Ahn, C. -Y., Lee, C. S., Choi, J. W., Lee, S. & Oh, H. -M. 2015. Global occurrence of harmful cyanobacterial blooms and N, P-limitation strategy for bloom control. Korean J. Environ. Biol. 33:1-6.   DOI
23 National Institute of Environmental Research (NIER). 2013. Research on implementing the harmful algal bloom alert system for weir in the Nakdong River watershed. NIER, Incheon, 33 pp.
24 Paerl, H. W., Gardner, W. S., McCarthy, M. J., Peierls, B. L. & Wilhelm, S. W. 2014. Algal blooms: noteworthy nitrogen. Science 346:175.
25 Park, H. -K., Cheon, S. U. & Ryu, J. K. 1993. Growth characteristics of bloom-forming blue-green algae. Korean J. Phycol. 8:47-54.
26 Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A. & Leedale, G. F. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. Emend. Elenkin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 293:419-476.   DOI
27 Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R. & van Nes, E. H. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272-282.   DOI
28 Chen, W., Zhang, Q. & Dai, S. 2009. Effects of nitrate on intracellular nitrate and growth of Microcystis aeruginosa. J. Appl. Phycol. 21:701-706.   DOI
29 Baldia, S. F., Evangelista, A. D., Aralar, E. V. & Santiago, A. E. 2007. Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines. J. Appl. Phycol. 19:607-613.   DOI
30 Brookes, J. D. & Ganf, G. G. 2001. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J. Plankton Res. 23:1399-1411.   DOI
31 Chisholm, S. W. 1992. Phytoplankton size. In Falkowski, P. G. & Woodhead, A. D. (Eds.) Primary Productivity and Biogeochemical Cycles in the Sea. Springer, New York, pp. 213-237.
32 Choi, K. S. & Kim, B. C. 2000. A study on the kinetic parameters of alkaline phosphatase by algae. Korean J. Limnol. 33:380-386.
33 Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014-1015.   DOI
34 Dai, G. -Z., Shang, J. -L. & Qiu, B. -S. 2012. Ammonia may play an important role in the succession of cyanobacterial bloom and the distribution of common algal species in shallow freshwater lakes. Glob. Chang. Biol. 18:1571-1581.   DOI
35 Takamura, N., Iwakuma, T. & Yasuno, M. 1987. Uptake of $^{13}C$ and $^{15}N$ (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. J. Plankton Res. 9:151-165.   DOI
36 Schindler, D. W. 2012. The dilemma of controlling cultural eutrophication of lakes. Proc. Biol. Sci. 279:4322-4333.   DOI
37 Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M. & Kasian, S. E. M. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. U. S. A. 105:11254-11258.   DOI
38 Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (Order Chroococcales). Bacteriol. Rev. 35:171-205.
39 Water Information System, National Institute of Environmental Research, Korea. 2016. Available from: http://water.nier.go.kr. Accessed Oct 30, 2017.
40 Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J. & Sivonen, K. 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb. Ecol. 43:443-454.   DOI
41 Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. 2003. The low TN:TP ratio, a cause or a result of Microcystis bloom? Water Res. 37:2073-2080.   DOI
42 Yu, J. J., Lee, H. J., Lee, K. -L., Lee, I. J., Jung, G. Y. & Chen, S. U. 2014. Effects of environmental factors on algal communities in the Nakdong River. J. Korean Soc. Water Environ. 30:539-548.   DOI
43 Yu, J. J., Lee, K. L., Lee, H. J., Hwang, J. W., Lyu, H. S., Shin, L. Y., Park, A. R. & Chen, S. U. 2015. Relations of nutrient concentrations on the seasonality of algal community in the Nakdong River, Korea. J. Korean Soc. Water Environ. 31:110-119.   DOI