• 제목/요약/키워드: nilpotency index

검색결과 12건 처리시간 0.02초

ON A GENERALIZATION OF THE MCCOY CONDITION

  • Jeon, Young-Cheol;Kim, Hong-Kee;Kim, Nam-Kyun;Kwak, Tai-Keun;Lee, Yang;Yeo, Dong-Eun
    • 대한수학회지
    • /
    • 제47권6호
    • /
    • pp.1269-1282
    • /
    • 2010
  • We in this note consider a new concept, so called $\pi$-McCoy, which unifies McCoy rings and IFP rings. The classes of McCoy rings and IFP rings do not contain full matrix rings and upper (lower) triangular matrix rings, but the class of $\pi$-McCoy rings contain upper (lower) triangular matrix rings and many kinds of full matrix rings. We first study the basic structure of $\pi$-McCoy rings, observing the relations among $\pi$-McCoy rings, Abelian rings, 2-primal rings, directly finite rings, and ($\pi-$)regular rings. It is proved that the n by n full matrix rings ($n\geq2$) over reduced rings are not $\pi$-McCoy, finding $\pi$-McCoy matrix rings over non-reduced rings. It is shown that the $\pi$-McCoyness is preserved by polynomial rings (when they are of bounded index of nilpotency) and classical quotient rings. Several kinds of extensions of $\pi$-McCoy rings are also examined.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.