• Title/Summary/Keyword: nifedipine

Search Result 153, Processing Time 0.025 seconds

Effects of Cadmium on Glucose Transport in 3T3- L1 adipocytes (3T3-L1 지방세포주에서 포도당 수송에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang- Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2005
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. This study was undertaken to investigate the effect of CdCl₂ on glucose transport and its mechanism in 3T3 - L1 adipocytes. CdCl₂ exhibits respectively 2.2 and 2.8 fold increases in the 2-deoxyglucose uptake when exposed to 10 and 25 μM of CdCl₂ for 12 hr. To investigate the stimulating mechanism of glucose transport induced by CdCl₂. Wortmannin and PD98059 were used respectively as PI3K inhibitor and MAPK inhibitor, which did not affect 2-DOG uptake. This results suggest that induced 2-deoxy-(l-3H)-D-glucose (2-DOG) uptake by CdCl₂ may not be concerned with the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker inhibited the 2- DOG uptake stimulated by CdCl₂. In addition, we also measured the increased production of Reactive oxygen substances (ROS) and glutathione (GSH) level in 3T3-L1 adipocytes to investigate correlation between the glucose uptake and increased production of ROS with H2DCFDA. CdCl₂ increased production of ROS. Induced 2-DOG uptake and increased production of ROS by CdCl₂ were decreased by N-acetylcystein (NAC). And L-buthionine sulfoximine (BSO) a potent inhibitor of γ-GCS, decreased of 2-DOG uptake. Also NAC and BSO changed the cellular GSH level, but GSH/GSSG ratio remained unchanged at 10, 25 μM of CdCl₂.

A Study on the Effects of Sobokchukeo-Tang on the Isolated Uterine Muscle of Rats (소복축어탕(少腹逐瘀湯)이 흰쥐의 적출 자궁에 미치는 영향)

  • Jin, Cheon-Sik;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.4
    • /
    • pp.72-84
    • /
    • 2005
  • Purpose : This study was carried out to investigate the relaxational response to the water extract of Sobokchukeo-Tang(SCT) in isolated uterine muscle in rats. Methods : Segments of uterine muscle obtained from female rats immediately after delivery were mounted in organ baths superfused on a polygraph. The effects of SCT on the tension of potassium induced contracture were studied in rat uterine smooth muscles. All experiments were performed in Krebs-Henseit solution which was aerated with 100% oxygen and kept at $37^{\circ}C$. Results : KCI did not produce contraction in calcium-free solution, but $CaCl_2$ induced concentration-dependent contraction after depolarizing with KCI. SCT inhibited the tonic contraction of uterine muscle as dose dependent manner. And when SCT was pretreated in calcium-free medium, it showed more powerful relaxational effect. The effect of 10mg/ml concentration of SCT was equal to that of 9nM and 70nM of nifedipine and verapamil and the relaxational effect of SCT on rat uterine muscle can be assumed to be concerned with the action of cyclic AMP. But the action mechanism of relaxation on the rat uterine muscles were concerned with the calcium channel. Conclusion : From this study we could suggest that the relaxtional effect of SCT on uterine muscle be available to preventing and curing dysmenorrhea.

  • PDF

Role of Nitric Oxide and Molsidomine in the Management of Pulmonary Hypertension in Takayasu's Arteritis (타카야수동맥염에 의한 만성 폐고혈압에서 Nitric Oxide가스와 Molsidomine의 치험 3예)

  • Chin, Jae-Yong;Lee, Sung-Soon;Lee, Sang-Soo;Shim, Tae-Sun;Lim, Chae-Man;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.964-972
    • /
    • 2000
  • We report three patients with pulmonary hypertension in Takayasu's arteritis, who showed long-term favorable response, clinically and hemodynamically, to the nitric oxide donor, molsidomine. In these patients, the inhaled nitric oxide was effective in reducing pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR) as was shown in the acute vasodilator response test using the invasive hemodynamic monitoring. Molsidomine (single oral dose of 4 mg) was also effective in reducing PAP and PVR in the acute test, but nifedipine was not. With 4 mg of molsidomine three times daily, their dyspnea, exercise capacity and hemodynamic parameters were improved. These favorable responses have lasted during the 1st and 3rd month follow-up in all patients.

  • PDF

Development of Alternative Testing Methods without Hazardous Reagents used in Korean Pharmaceutical Codex (고시의약품 시험에 사용되는 유해시약 대체 시험법 개발)

  • Kim, Hee-Yun;Kang, Hyun-Kyung;Choi, Seon-Hee;Bang, Su-Jin;Han, Kyung-Jin;Choi, Sung-Hee;Kim, Jin-Hee;Lee, Hwa-Jung;Kang, Chan-Soon
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.142-149
    • /
    • 2010
  • Development of alternative testing methods for the replacement of hazardous reagents with less hazardous ones is strongly enforced because exposure of human and environment to hazardous reagents are restricted and hazardous reagents are gradually prohibited from using in various testing methods. Thus, in this study, we developed 8 monographs from the Korean Pharmaceutical Codex by substituting the use of the hazardous reagents including ICH class 1 such as benzene, chloroform and dioxane to the use of less toxic ones like ICH class 2 or 3 reagents. We also improved their qualification and quantification performance. Among 8 monographs, the 6 newly developed TLC methods for the identification of nifedipine, oxolamine citrate, ketoprofen lysinate, chlorquinaldol, retinol acetate, and riboflavin showed a clear spot of corresponding material without any interference in spite of the replacement with ICH class 2 or 3 reagents. For the quantification of domperidone and trimebutine, HPLC methods were developed for the substitution of UV/VIS spectrometry and titrimetry, respectively. These HPLC methods were validated for the linearity, recovery, reproducibility, and inter-laboratory variations. In conclusion, the newly developed methods could be expected to become valuable tools for revising the Korean Pharmaceutical Codex.

Measurement of Finger Blood Flow in Raynaud's Phenomenon by Radionuclide Angiography (레이노드 현상에서 수지혈류 측정에 관한 연구)

  • Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Choi, Sung-Jae;Koh, Chang-Soon;Kim, Sang-Joon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.21 no.2
    • /
    • pp.183-190
    • /
    • 1987
  • In Raynaud's phenomenon, the authors measured finger blood flow after ice water exposure by analyzing the time activity curve of radionuclide angiography on both hands. The results were as follows: 1) The digital blood flow did not decrease after ice water exposure in normal subjects. 2) In the patients with Raynaud's phenomenon, there were two groups: the one had decreased digital blood flow after cold exposure, and the other had paradoxically increased digital blood flow after cold exposure. 3) There was no difference in the digital blood flow of hand in room temperature between the normal and the patients with reduced digital blood flow after cold exposure, but the digital blood flow of the hand in room temperature was markedly reduced in the patients with paradoxically increased flow after cold exposure. 4) In the static image the difference was not significant in comparision with the dynamic study, because it represents pooling of the blood in the vein rather than flow. 5) After the treatment with nifedipine, the digital blood flow increased. In conclusion, the radionuclide angiography was useful in measuring the digital blood flow in Raynaud's phenomenon, and further studies with various drugs is expected.

  • PDF

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.

Regulation of $Mg^{2+}$ Release in Guinea Pig Heart and Isolated Ventricular Myocytes by ${\alpha}_1-Adrenergic$ Stimulation (기니픽 심장과 심근 세포에서 ${\alpha}_1-Adrenergic$ 자극에 의한 $Mg^{2+}$ 유리조절)

  • Kang, Hyung-Sub;Chang, Sung-Eun;Kim, Jin-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.717-730
    • /
    • 1997
  • $Mg^{2+}$ is the fourth most abundant cation in cellular organisms. Although the biological chemistry and the physiological roles of the magnesium ion were well known, the regulation of intracellular $Mg^{2+}$ in mammalian cells is not fully understood. More recently, however, the mechanism of $Mg^{2+}$ mobilization by hormonal stimulation has been investigated in hearts and in myocytes. In this work we have investigated the regulation mechanism responsible for the $Mg^{2+}$ mobilization induced by ${\alpha}1-adrenoceptor$ stimulation in perfused guinea pig hearts or isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}$-free medium. ${\alpha}1-Agonists$ such as phenylephrine were found to induce $Mg^{2+}$ efflux in both perfused hearts or myocytes. This was blocked by prazosin, a ${\alpha}1-adrenoceptor$ antagonist. $Mg^{2+}$ efflux by phenylephrine was amplified by $Na^+$ channel blockers, an increase in extracellular $Ca^{2+}$ or a decrease in extracellular $Na^+$. By contrast, the $Mg^{2+}$ influx was induced by verapamil, nifedipine, ryanodine, lidocaine or tetrodotoxin in perfused hearts, but not in myocytes. $W_7$, a $Ca^{2+}/calmodulin$ antagonist, completely blocked the pheylephrine-, A23187-, veratridine-, $Ca^{2+}-induced$ $Mg^{2+}$ efflux in perfused hearts or isolated myocytes. In addition, $Mg^{2+}$ efflux was induced by $W_7$ in myocytes but not in perfused heart. In conclusion, An increase in $Mg^{2+}$ efflux by ${\alpha}1-adrenoceptor$ stimulation in hearts can be through $IP_3$ and $Ca^{2+}-calmodulin$ dependent mechanism.

  • PDF

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

Calcium Current in the Unfertilized Egg of the Hamster

  • Haan, Jae-Hee;Cho, Soo-Wan;Yang, Young-Sun;Park, Young-Geun;Park, Hong-Gi;Chang, Gyeong-Jae;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.215-224
    • /
    • 1994
  • The presence of a calcium current $(i_{Ca^{2+}})$ passed via a specific channel was examined in the unfertilized hamster egg using the whole-cell voltage clamp technique. Pure inward current was isolated using a $Ca^{2+}-rich$ pipette solution containing 10 mM TEA. This current was independent of external $Na^+$ and was highly sensitive to the $Ca^{2+}$ concentration in the bathing solution, indicating that the inward current is carried by $Ca^{2+}$. The maximal amplitude was $-4.12{\pm}0.58nA\;(n=12)$ with 10mM $Ca^{2+}$ at -3OmV from a holding potential of -8OmV. This current reached its maximum within 20ms beyond -3OmV and decayed rapidly with an inactivation time constant $({\tau})$ of 15ms. Activation and inactivation of this $i_{Ca^{2+}}$ was steeply dependent on the membrane potential. The $i_{Ca^{2+}}$ began to activate at the lower voltage of -55 mV and reached its peak at -35 mV, being completely inactivated at potentials more positive than -40 mV. These result suggest that $i_{Ca^{2+}}$ in hamster eggs passes through channels with electrical properties similar to low voltage-activated T-type channels. Other results from the present study support this suggestion; First, the inhibitory effect of $Ni^{2+}\;(IC_{50}=13.7\;{\mu}M)$ was more potent than $Cd^{2+}\;(IC_{50}=123\;{\mu}M)$. Second, $Ba^{2+}$ conductance was equal to or below that of $Ca^{2+}$. Third, $i_{Ca^{2+}}$ in hamster eggs was relatively insensitive to nifedipine $(IC_{50}=96.6\;{\mu}M)$, known to be a specific t-type blocker. The physiological role of $i_{Ca^{2+}}$ in the unfertilized hamster eggs remains unclear. Analysis from steady-state inactivation activation curves reveals that only a small amount of this current will pass in the voltage range $(-70{\sim}-30\;mV)$ which partially overlaps with the resting membrane potential. This current has the property that it can be easily activated by a weak depolarization, thus it may trigger a certain kind of a intracellular event following fertilization which may cause oscillations in the membrane potential.

  • PDF

Effect of Sunghyangchungisan on Contractile Reactivity and $Ca^{2+}$ metabolism in Isolated Rabbit Carotid Artery (성향정기산(星香正氣散)이 가토의 경동맥(頸動脈) 평활근(平滑筋) 긴장(緊張) 및 $Ca^{2+}$ 대사(代謝)에 미치는 영향(影響))

  • Kim, Young-Gyun;Kweon, Jung-Nam;Kim, Jong-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.377-388
    • /
    • 2000
  • Objective : This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone and $Ca^{2+}$ metabolism in arterial tissues. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities, endothelial function and $Ca^{2+}$ metabolism were determined. Methods : In phentobarbital sodium-anesthetized rabbits, SHCS administered through ear vein (100 mg/Kg body wt.) or intragastric dwelling tube (300 mg/Kg body wt.) attenuated phenylephrine (PE, 10 ${\mu}g$/Kg, i.v.)-induced increases in both systolic and diastolic cartoid arterial blood pressure. Results : In experiments with isolated arterial strips, SHCS relaxed arterial rings which were pre-contracted by phenylephrine (PE, 1 ${\mu}M$). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50)$ of PE oh its dose-response curve ruled out the possible interaction of SHCS with ${\alpha}$-receptors. The relaxant effect of SHCS was not affected by removal of endothelium or a nitric oxide synthase inhibitor, L-NAME. Methylene blue, an inhibitor of the soluble guanylate cyclase, did not affect the relaxant effect of SHCS. These results suggest that the action of SHCS is not mediated by the endothelium nor soluble guanylate cyclase. Constant cGMP production determined in arterial strips in the presence or absence of SHCS is consistent with this conclusion. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}$-free solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. SHCS partially blocked $Ca^{2+}$ influx stimulated by PE and high $K^+$ which was determined by 5-min ^{45}Ca$ uptake, while it did not affect $Ca^{2+}$ efflux. Conclusions : From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium independent manner, andinhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF