• Title/Summary/Keyword: nifedipine

Search Result 153, Processing Time 0.027 seconds

Effects of Calcium Channel Blockers on Porcine Cardiac and Coronary Arterial Function in Ischemia-Reperfusion

  • Baik, Yung-Hong;Kook, Hyun;Park, Sun-Hee;Jeong, Seong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.587-595
    • /
    • 1999
  • This study was designed to investigate effects of calcium antagonists on endothelial and neuronal dysfunction of right coronary artery (RCA) induced by ischemia- reperfusion in anesthetized, open-chest pigs. After reperfusion, pigs were sacrificed and the RCA was rapidly dissected for in vitro experiments. Experimental groups were divided into 4 groups: control (C-RCA), ischemia-reperfusion only (I-RCA), verapamil infusion (VI-RCA) and nifedipine infusion (NI-RCA) group, respectively. The ischemia did not affect hemodynamics, mean arterial pressure, heart rate, LVdP/dtmax, and decreased RCA flow. Arterial pressure and heart rate during ischemia-reperfusion were decreased in VI-RCA and NI-RCA, and RCA flow during reperfusion was increased in NI-RCA. 5-Hydroxytryptamine (5-HT) produced concentration-dependent contractions in C-RCA. The 5-HT-induced contractions were potentiated in I-RCA and VI-RCA, but not in NI-RCA. Endothelium-dependent relaxation by calcium ionophore A23187 was inhibited in I-RCA and VI-RCA, and recovered in NI-RCA. Cyclic GMP contents were decreased in I-RCA group alone. Electrical field stimulation in C-RCA produced transient and frequency-dependent contractions and at 50 Hz caused biphasic contractions. The transient contractions were not affected by pretreatment with phentolamine and atropine, but the biphasic contraction was altered by the pretreatment. Both contractions were inhibited in I-RCA, and were partially recovered in VI-RCA and NI-RCA. Ischemia-reperfusion of RCA in pigs causes endothelial and neuronal dysfunctions, and calcium antagonists partially prevent both.

  • PDF

[$Na^+-Ca^{2+}$ Exchange Curtails $Ca^{2+}$before Its Diffusion to Global $Ca^{2+}{_i}$ in the Rat Ventricular Myocyte

  • Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In the heart, $Na^{+}-Ca^{2+}$ exchange (NCX) is the major $Ca^{2+}$ extrusion mechanism. NCX has been considered as a relaxation mechanism, as it reduces global $[Ca^{2+}]_i$ raised during activation. However, if NCX locates in the close proximity to the ryanodine receptor, then NCX would curtail $Ca^{2+}$ before its diffusion to global $Ca^{2+}_i$ This will result in a global $[Ca^{2+}]_i$ decrease especially during its ascending phase rather than descending phase. Therefore, NCX would decrease the myocardial contractility rather than inducing relaxation in the heart. This possibility was examined in this study by comparing NCX-induced extrusion of $Ca^{2+}$ after its release from SR in the presence and absence of global $Ca^{2+}_i$ transient in the isolated single rat ventricular myocytes by using patch-clamp technique in a whole-cell configuration. Global $Ca^{2+}_i$ transient was controlled by an internal dialysis with different concentrations of BAPTA added in the pipette. During stimulation with a ramp pulse from +100 mV to -100 mV for 200 ms, global $Ca^{2+}_i$ transient was suppressed only mildly, and completely at 1 mmol/L, and 10 mmol/L BAPTA, respectively. In these situations, ryanodine-sensitive inward NCX current was compared using $100{\mu}mol/L$ ryanodine, $Na^+$ depletion, 5 mmol/L $NaCl_2$ and $1{\mu}mol/L$ nifedipine. Surprisingly, the result showed that the ryanodine-sensitive inward NCX current was well preserved after 10 mmol/L BAPTA to 91 % of that obtained after 1 mmol/L BAPTA. From this result, it is concluded that most of the NCX-induced $Ca^{2+}$ extrusion occurs before the $Ca^{2+}$ diffuses to global $Ca^{2+})i$ in the rat ventricular myocyte.

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

The Effect of Ghrelin on $Ca^{2+}$ Concentration in Thyroid FRTL-5 Cells

  • Kim, Byung-Joo;Park, Young-Joo;Park, Do-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Ghrelin is a newly discovered peptide, which is released from the stomach and neurons in the hypothalamic arcuate nucleus (ARC), and potently stimulates growth hormone release and food intake. In the present study, we investigated the effect of ghrelin on $[Ca^{2+}]_i$ in thyroid FRTL-5 cells. Ghrelin (5 nM) increased $[Ca^{2+}]_i$ and TSH (1 unit/l) had an additive effect on $[Ca^{2+}]_i$ when extracellular normal solution was 1.1mM $Ca^{2+}$ containing Coon's modified Ham's F12 medium. When $Ca^{2+}-free$ medium containing 2 mM EGTA replaced the above normal solution, ghrelin also induced a similar rise in $[Ca^{2+}]_i$. In the middle of $[Ca^{2+}]_i$ increment by ghrelin, nifedipine $(1\;{\mu}M)$, nickel $(100\;{\mu}M)$ and $La^{3+}\;(100\;{\mu}M)$ had no effect on $[Ca^{2+}]_i$. After endoplasmic reticulum was depleted by cyclopiazonic acid $(CPA;10\;{\mu}M)$, ghrelin caused no visible change on $[Ca^{2+}]_i$ in $Ca^{2+}-free$/2 mM EGTA solution. These results suggest that ghrelin can increase $[Ca^{2+}]_i$ through endoplasmic reticulum in thyroid FRTL-5 cells.

Effect of $Ca^{2+}-channel$ Blockers on Norepinephrine Release in the Rat Hippocampal Slice and Synaptosome

  • Kim, Suk-Won;Jung, Kyu-Yong;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.87-91
    • /
    • 2002
  • The aim of this study was to investigate the role of $Ca^{2+}-channel$ blockers in norepinephrine (NE) release from rat hippocampus. Slices and synaptosomes were incubated with $[^3H]-NE$ and the releases of the labelled products were evoked by 25 mM KCl stimulation. Nifedipine, diltiazem, nicardipine, flunarizine and pimozide did not affect the evoked and basal release of NE in the slice. But, diltiazem, nicardipine and flunarizine decreased the evoked NE release with a dose-related manner without any change of the basal release from synaptosomes. Also, a large dose of pimozide produced modest decrement of NE release. ${\omega}-conotoxin$ (CTx) GVIA decreased the evoked NE release in a dose-dependent manner without changing the basal release. And ${\omega}-CTxMVIIC$ decreased the evoked NE release in the synaoptosomes without any effect in the slice, but the effect of decrement was far less than that of ${\omega}-CTxGVIA.$ In interaction experiments with ${\omega}-CTxGVIA,\;{\omega}-CTxMVIIC$ slightly potentiated the effect of ${\omega}-CTxGVIA$ on NE release in the slice and synaptosomal preparations. These results suggest that the NE release in the rat hippocampus is mediated mainly by N-type $Ca^{2+}-channels,$ and that other types such as L-, T- and/or P/Q-type $Ca^{2+}-channels$ could also be participate in this process.

Relatoinship between Sarcoplasmic Reticular Calcium Release and $Na^+-Ca^{2+}$ Exchange in the Rat Myocardial Contraction

  • Kim, Eun-Gi;Kim, Soon-Jin;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2000
  • Suppressive role of $Na^+-Ca^{2+}$ exchange in myocardial tension generation was examined in the negative frequency-force relationship (FFR) of electric field stimulated left atria (LA) from postnatal developing rat heart and in the whole-cell clamped adult rat ventricular myocytes with high concentration of intracellular $Ca^{2+}$ buffer (14 mM EGTA). LA twitch amplitudes, which were suppressed by cyclopiazonic acid in a postnatal age-dependent manner, elicited frequency-dependent and postnatal age-dependent enhancements after $Na^+-reduced,\;Ca^{2+}-depleted$ (26 Na-0 Ca) buffer application. These enhancements were blocked by caffeine pretreatment with postnatal age-dependent intensities. In the isolated rat ventricular myocytes, stimulation with the voltage protocol roughly mimicked action potential generated a large inward current which was partially blocked by nifedipine or $Na^+$ current inhibition. 0 Ca application suppressed the inward current by $39{\pm}4%$ while the current was further suppressed after 0 Na-0 Ca application by $53{\pm}3%.$ Caffeine increased this inward current by $44{\pm}3%$ in spite of 14 mM EGTA. Finally, the $Na^+$ current-dependent fraction of the inward current was increased in a stimulation frequency-dependent manner. From these results, it is concluded that the $Ca^{2+}$ exit-mode (forward-mode) $Na^+-Ca^{2+}$ exchange suppresses the LA tension by extruding $Ca^{2+}$ out of the cell right after its release from sarcoplasmic reticulum (SR) in a frequency-dependent manner during contraction, resulting in the negative frequency-force relationship in the rat LA.

  • PDF

Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta (흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성)

  • Kang, Hyung-sub;Choi, Cheol-ho;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

Effect of Allium sativum on cytochrome P450 and possible drug interactions

  • Janil, Ashutosh;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.274-285
    • /
    • 2006
  • Allium sativum (Family Amaryllidaceae or Liliaceae) is used worldwide for various clinical uses like hypertension, cholesterol lowering effect, antiplatelets and fibrinolytic activity etc. Due to these common house hold uses of Allium sativum, as a herbal supplements, and failure of patients to inform their physician of the over-the-counter supplements they consume leads to drugnutrient interactions with components in herbal supplements. Today these types of interactions between a herbal supplement and clinically prescribed drugs are an increasing concern. In vitro studies indicated that garlic constituents modulated various CYP (cytochrome P450) enzymes. CYP 3A4 is abundantly present in human liver and small intestine and contributes to the metabolism of more than 50% of commonly used drugs including nifedipine, cyclosporine, erythromycin, midazolam, alprazolam, and triazolam. Extracts from fresh and aged garlic inhibited CYP 3A4 in human liver microsomes. The in vivo effects of garlic constituents are found to be species depended and the dosing regimen of garlic constituents appeared to influence the modulation of various CYP isoforms. Studies have indicated that the inhibition of various CYPs by organosulfur compounds from garlic was related to their structure also. Studies using in vitro, in vivo, animal and human models have indicated that various garlic constituents can be the substrates, inhibitors and or inducers of various CYP enzymes. The modulation of CYP enzyme activity and expression are dependent on the type and chemical structure of garlic constituents, dose regime, animal species and tissue, and source of garlic thus this review throws light on the possible herb drug interaction with the use of garlic.

Traditional oriental herbal medicine, Jukyeoondam-tang, occludes aconitine-induced ventricular arrhythmia in hearts

  • Ha, Ki-Chan;Chae, Han-Jung;Piao, Cheng-Shi;Chae, Soo-Uk;Kim, Hyung-Ryong;Chae, Soo-Wan
    • Advances in Traditional Medicine
    • /
    • v.4 no.3
    • /
    • pp.157-161
    • /
    • 2004
  • We showed the effects of the traditional herbal medicine, Jukyeoondam-tang (JO-T, Zhu-ru-Wen-Dan-Tang in Chinese), on ventricular arrhythmia induced by aconitine. Electrophysiological experiments with conventional microelectrode techniques revealed that JO-T potently suppressed the aconitine-induced arrhythmias in ventricular strips of the rat. In the aconitine-induced arrhythmia model of the rat, pretreatment with JO-T $(100\;{\mu}g/ml)$ completely occluded the appearance of ventricular tachyarrhythmia (VT) or ventricular fibrillation (VF) induced by aconitine. Furthermore, the aconitine-induced ventricular arrhythmia was occluded by $Na^+$ channel blocker quinidine but was not occluded by $K^+$ channel blocker glibenclamide $(3\;{\mu}mol/L)\;and\;Ca^{2+}$ channel blocker nifedipine $(10\;{\mu}mol/L)$. We also confirmed the effect of JO-T in the ischemia-reperfusion (I/R)-induced arrhythmia model of the rat. JO-T did not affect the I/R-induced arrhythmias in rats. JO-T may alleviate the risk of ventricular arrhythmias following aconitine. These results suggest that JO-T is a potent antiarrhythmic drug having a$Na^+$ channel-blocking action.

Molecular Cloning and Expression of Fusion Proteins Containing Human Cytochrome P450 3As and Rat NADPH-P450 Reductase in Escherichia coli

  • Chun, Young-Jin;Guengerich, F-Peter
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.249-257
    • /
    • 2002
  • Cytochrome P450 3As such as 3A4 and 3A5 metabolize a wide range of pharmaceutical compounds. The vectors for the expression of fusion protein containing an N-terminal human P450 3A4 or P450 3A5 sequences and a C-terminal rat NADPH-cytochrome P450 reductase moiety were constructed. These plasmids were used to express the fusion protein in Escherichia coli DH5$\alpha$ cells. High levels of expression were achieved (100~200 nmol/liter) and the expressed fusion protein in E. coli membranes were catalytically active for nifedipine oxidation, a typical enzymatic activity of P450 3A4. The NADPH-P450 reductase activities of these fusion protein were also determined by measuring reduction of cytochrome c. To fine a specific Inhibitor of P450 3A4 from naturally occurring chemicals, a series of isothiocyanate compounds were evaluated for the inhibitory activity of P450 using the fusion proteins in E. coli membranes. Of the five isothiocyanates (phenethyl isothiocyanate, phenyl isothiocyanate, benzol isothiocyanate, benzoyl isothiocyanate and cyclohexyl isothiocyanate) tested, benzoyl isothiocyanate showed a strong inhibition of P450 3A4 with an $IC_{50}$value of 2.8 $\mu\textrm{M}$. Our results indicate that the self-sufficient fusion protein will be very useful tool to study the drug metabolism and benzyl isothiocyanate may be valuable for characterizing the enzymatic properties of P450 3A4.