• Title/Summary/Keyword: nickel-titanium wire

Search Result 32, Processing Time 0.021 seconds

A comparative study of frictional forces according to orthodontic wires and ligation method under dry and wet conditions (교정선의 종류, 결찰방법, 타액의 유무에 따른 마찰력의 비교연구)

  • Lee, Jin-Woo;Cha, Kyung-Suk;Han, Jung-Suk
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.271-281
    • /
    • 2001
  • The Purpose of this study was fourfold - to evaluate the general laws of friction applied to orthodontic conditions, to compare archwire materials under these controlled conditions, to compare ligation method, and to measure the effect of the artificial saliva on friction with these materials Three wire alloys (Cobalt-chromium, Nickel-titanium, Beta-titanium) in two size wires (.016" , .016" ${\times}$.022" ) were examined respect to the bracket (.018" ${\times}$.025" standard), and two ligature material (stainless steel, elastomeric) in dry and wet conditions The results were as follows, 1. The order of frictional force against alloy materials was Co-Cr (lowest), Ni-Ti, and ${\beta}$-Ti(highest) - with the exception of elastomeric ligation under wet conditions. 2. S.S. ligation gave rise to significantly greater friction than elastomeric ligation did. 3. Testing in the presence of saliva, rather than in dry conditions, decreased the frictional force for S.S. ligation with .016" Co-Cr, Ni-Ti, ${\beta}$-Ti. but, increased the frictional force for S.S. ligation with .016" ${\times}$ .022" Co-Cr, Ni-Ti, ${\beta}$-Ti. 4. .016" ${\times}$.022 " wire generated more friction than .016" wire.

  • PDF

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study

  • Amini, Fariborz;Rakhshan, Vahid;Pousti, Maryam;Rahimi, Hajir;Shariati, Mahsa;Aghamohamadi, Bahareh
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Objective: The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods: This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodontics, OrthoTechnology, and All-Star Orthodontics. Aft er analyzing the composition of each wire by energy-dispersive X-ray analysis, the SR of each wire was determined by scanning electron microscopy (SEM) and surface profilometry. Data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests (${\alpha}$ < 0.05). Results: The average SR of NiTi wires manufactured by Smart Technology, American Orthodontics, OrthoTechnology, and All-Star Orthodontics were $1,289{\pm}915A^{\circ}$, $1,378{\pm}372A^{\circ}$, $2,444{\pm}369A^{\circ}$, and $5,242{\pm}2,832A^{\circ}$, respectively. The average SR of SS wires manufactured by All-Star Orthodontics, OrthoTechnology, and American Orthodontics were $710{\pm}210A^{\circ}$, $1,831{\pm}1,156A^{\circ}$, and $4,018{\pm}2,214A^{\circ}$, respectively. Similar to the results of profilometry, the SEM images showed more defects and cracks on the SS wire made by American Orthodontics and the NiTi wire made by All-Star Orthodontics than others. Conclusions: The NiTi wire manufactured by All-Star Orthodontics and the SS wire made by American Orthodontics were the roughest wires.

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis

  • Panagiotis Roulias;Ioulia-Maria Mylonopoulou;Iosif Sifakakis;Christoph Bourauel;Theodore Eliades
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire. Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis. Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5. Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

Effect of friction from differing vertical bracket placement on the force and moment of NiTi wires (브라켓의 수직적 변위에 따른 마찰이 NiTi wire의 힘과 모멘트에 미치는 영향)

  • Park, Jea-Beom;Yoo, Ji-A;Mo, Sung-Seo;Choi, Kwang-Cheol;Kim, Yoon-Ji;Han, Seong-Ho;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.337-345
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate the effect of force and moment produced by Nickel-titanium wires of different sizes at activation and deactivation according to differing vertical bracket displacement. Methods: Superelastic NiTi wires of 3 different sizes (0.014", 0.016", and 0.016" ${\times}$ 0.022") were tied with elastomeric or 0.009-inch stainless steel ligations in a twin-bracket, 0.018-inch slot. A testing machine recorded the effects of simulated activation of 5 distances from 1 to 5 mm and deactivation of 5 distances from 4 to 0 mm, in increments of 1 mm. Results: Frictional force increased the wire stiffness during loading. Ligation of 0.014-inch NiTi wire with O-ring resulted in a significant increase in the stiffness. On application of orthodontic force for 5 mm of vertical displacement of teeth, the effective displacement in the case of the 0.014", 0.016", and 0.016" ${\times}$ 0.022" NiTi wires was 2 mm, 3 mm, and 4 mm, respectively. Conclusions: Our results showed that movement of teeth with large vertical displacement was ineffective because of excessive friction. This finding might contribute to the understanding of the force system required for effective teeth movement and thereby facilitate the application of the appropriate light wire for leveling and alignment.

Three point bending test of recycled Nickel-Titanium alloy wires (재생한 니켈 티타늄 호선의 3점 굴곡물성실험)

  • Lee, Sung-Ho;Chang, Young Il
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.731-738
    • /
    • 2000
  • The purpose of this study was to investigate the change of 3 point bending properties of various nickel titanium wires after recycling. Four Types of nickel-titanium (Align: martensitic type, NiTi, Optimalloy, Sentalloy: austenitic type) wires were divided to three groups: as-received condition (T0: control group), treated in artificial saliva for four weeks (T1) and autoclaved after being treated in artificial saliva (T2). Detrimental changes were observed for the selected mechanical properties in three point bending test. Loading force at 3mm deflection, unloading force at 3mm deflection, stress hysteresis, loading force at 1mm deflection, unloading force at 1mm deflection and stress hysteresis at 1mm deflection were calculated. The findings suggest that : 1. Align demonstrated statistically significant increase In loading force (p<0.05) and unloading force (p<0.01) at 3mm deflection after recycling(T2), but NiTi, Optimalloy and Sentalloy showed no statistically difference after recycling. 2. Align demonstrated statistically significant decrease in hysteresis(p<0.01) after recycling(T2) but NiTi, Optimalloy and Sentalloy showed no statistically significant difference after recycling. 3. All wires showed no statistically significant difference in loading force at 1mm deflection after recycling(T2). 4. Align demonstrated statistically significant decrease in unloading force in 1mm deflection (p<0.05) after recycling(T2) but NiTi, Optimalloy and Sentalloy showed no statistically difference after recycling 5. Loading force and unloading force of T1 showed no significant change compared with those of T0, but loading force and unloading force of T2 showed significant changes compared with those of T0(p<0.05, p<0.01 respectively). 6. Align demonstrated a tendency to lose some of this pseudoelasticity in T1 and pseudoplasticity and pseudoelasticity in T2.

  • PDF

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires

  • Inami, Toshihiro;Tanimoto, Yasuhiro;Minami, Naomi;Yamaguchi, Masaru;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • Objective: In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fibers were prepared for esthetic orthodontic wires using pultrusion. These laboratory GFRP wires are more transparent than the commercially available nickel-titanium wire; however, an investigation of the color stability of GFRP during orthodontic treatment is needed. Accordingly, in the present study, the color stability of GFRP was assessed using colorimetry. Methods: Preparation of GFRP esthetic round wires (diameter: 0.45 mm [0.018 inch]) using pultrusion was described previously. Here, to investigate how the diameter of fiber reinforcement affects color stability, GFRPs were prepared by incorporating either $13-{\mu}m$ (GFRP-13) or $7-{\mu}m$ glass (GFRP-7) fibers. The color changes of GFRPs after 24 h, and following 1, 2, and 4 weeks of coffee immersion at $37^{\circ}C$, were measured by colorimetry. We evaluated the color stability of GFRPs by two evaluating units: the color difference (${\Delta}E^*$) and National Bureau of Standards (NBS). Results: After immersion, both GFRPs showed almost no visible color change. According to the colorimetry measurements, the ${\Delta}E^*$ values of GFRP-13 and GFRP-7 were 0.73-1.16, and 0.62-1.10, respectively. In accordance with NBS units, both GFRPs showed "slight" color changes. As a result, there were no significant differences in the ${\Delta}E^*$ values or NBS units for GFRP-13 or GFRP-7. Moreover, for both GFRPs, no significant differences were observed in any of the immersion periods. Conclusions: Our findings suggest that the GFRPs will maintain high color stability during orthodontic treatment, and are an attractive prospect as esthetic orthodontic wires.