• 제목/요약/키워드: nickel-ferrite

검색결과 67건 처리시간 0.021초

니켈 페라이트의 입자 거동 연구 (A Study on Particulate Behavior of Nickel Ferrite)

  • 구희권;박병기;김종영;정은선
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 추계학술발표논문집
    • /
    • pp.365-367
    • /
    • 2008
  • 원자로 냉각계통의 압력경계를 구성하고 있는 재료들의 부식은 재료 표면에 형성되는 산화막, 금속재료의 구성성분이 용해되어 생성된 가용성 화학종 및 산화물 입자 형태의 부식생성물들을 발생시킨다. 금속합금의 부식에 의한 가용성 화학종 및 입자들의 방출은 원자로 냉각계통에서 노심과 증기발생기를 순환하면서 연료피복관 위에 침전되어 여러 가지 문제를 야기한다. 크러드는 구조재료의 부식에 기인하여 발생한 부식생성물들이 냉각수에 부유하여 떠다니거나 피복관 표면에 침적하여 형성되며 주로 니켈과 철 산화물로 구성되어 있다. 원자로 냉각계통에서 크러드를 최소화하기 위하여 수화학 조건들을 제어하지만 장주기 고연소도 노심에서 AOA 현상을 일으키는 주된 원인이 되고 있다. 피복관 위에 침적되는 크러드는 붕소의 잠복위치를 제공할 뿐만 아니라 냉각수의 압력강하를 증가시키고 피복관의 부식 및 파손 원인을 제공하며 방사선 준위가 증가하도록 한다. 따라서 본 연구에서는 반응속도론적 관점에서 원자로 정지시의 용출 크러드 특성에 대한 연구를 수행하였다.

  • PDF

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 충격인성에 미치는 χ상의 영향 (Effect of χ Phase on Impact Toughness of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel)

  • 남궁원;강창룡
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.75-79
    • /
    • 2013
  • This study was carried out to investigate the precipitation behavior of the ${\chi}$ phase and the impact toughness of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The ${\chi}$ phase was precipitated in the early stage of aging, and with the increasing aging time. However, after reaching a maximum value, the number decreased as a result of the gradual transformation of the ${\chi}$ phase into the ${\sigma}$-phase. It was proved that the ${\chi}$ phase was an intermetallic compound, which represented a lower nickel concentration, higher chromium and molybdenum concentrations, and very higher tungsten concentration compared to the matrix phases. It also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. The decomposition of the ferrite phase into the ${\gamma}_2$ and ${\sigma}$ phases was retarded by W substitution for Mo. Thus, the number of ${\chi}$ phases increased. The impact value was decreased by the substitution of W for Mo. The impact toughness rapidly decreased with time when the ${\chi}$ phase began to precipitate in the initial stage of aging. The impact toughness was, therefore, greatly influenced for the precipitation of the ${\chi}$ phase.

기존 케틀 분석 및 가열 시스템 연구를 통한 16oz 팝퍼 케틀 국산화 기술 개발 (Localization Technology Development of 16oz Popper Kettle through Existing Kettle Analysis and Heating System Study)

  • 이정훈;김경철;오영섭;유범상
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7773-7780
    • /
    • 2015
  • 팝퍼 케틀의 국산화 개발을 위하여 기존 케틀을 분석하고, 열선 배치에 따른 열전달 해석을 통하여 케틀 국산화 개발을 위한 연구를 수행하였다. 케틀 재료 분석을 위한 시편을 제작하고 Polishing 및 Etching을 수행하였다. SEM을 이용하여 시편의 표면을 관찰하여 페라이트 퍼얼라이트 재질을 디프 드로잉 방식으로 제작하였음을 파악하였다. 도금층 재질 및 두께 분석을 통해 Ni(16%)도금이 $16{\sim}49{\mu}m$임을 파악하였다. 또한 열선 배치에 따른 열전달 특성을 파악하고, 최적 열선 시스템을 개발하였다. 케틀의 장시간 작업 시간 중에 발생하는 케틀 과열 시 작동을 중지하는 제어 시스템을 제작하였다. 케틀 개발 이후 성능 평가를 수행하여 부피팽창률에 대한 평가 규격 KS G3602를 만족하였다.

초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성 (A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation)

  • 김근우;윤성식;김기철;이명원;강명창
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.