• Title/Summary/Keyword: nickel powder

Search Result 265, Processing Time 0.027 seconds

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

A Study on the Constituents of Pyrolusitum by XRD and XRF (XRD와 XRF를 이용한 무명이(無名異)의 구성 성분 연구)

  • Lee, Minwoo;Choi, Goya;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.87-92
    • /
    • 2018
  • Objectives: The aim of the study was to analyze the constituents of Pyrolusitum, which was used to eliminate static blood and inflammation, to establish the basis of clinical application. Methods: Qualitative analysis was performed by X-Ray Diffraction (XRD) using the sample as a powder, and the elemental content of granular sample was measured by X-Ray Fluorescence (XRF). 1 M hydrochloric acid and 5% sodium hydroxide aqueous solution were added to observe the changing shape, respectively. Results: Qualitative analysis by XRD revealed that the Pyrolusitum samples used in the study contained quarts and kaolinite. Quantitative analysis by XRF revealed that the manganese content in the samples used in the study was 6.16% on average, while iron was contained the highest amount of 22.99%. The minor constituents include 1.08% of titanium, 0.30% of barium, 0.18% of lead, 0.06% of zirconium, 0.05% of chromium, 0.04% of zinc, 0.03% of cadnium, 0.02% of nickel, 0.01% of arsenic, 0.01% of copper, 0.01% of rubidium, 0.01% of strontium, 0.00% of molybdenum, respectively. And cobalt, which is reported to be a constituent of Pyrolusitum, was not detected at all in the samples of the study. Pyrolusitum was dissolved in dark brown when it was put into 1 M hydrochlorid acid, and there was brown precipitate when sodium hydroxide solution was added to Pyrolusitum and stirred. Conclusions: It was found that manganese and iron were the major constituents of Pyrolusitum, and it could be identified by using concentrated hydrochloric acid and sodium hydroxide solution.

Shear Bond Strength between Veneered Ceramics and Core Materials for Esthetic Restorations (심미보철용 코어재료와 베니어 세라믹 계면의 전단결합강도 비교)

  • Kim, Ki-Won;Park, Hang-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • Esthetic restorations have been widely used in dental practice, although many studies have focused on the development and improvement of all ceramic restorations. The success of esthetic restorations depends primarily on an optimal bond strength between various veneered ceramics and core materials for esthetic restorations. The purpose of this study was to compare the shear bond strength between various veneered ceramics and core materials for esthetic restorations. 30 metal cores and 20 zirconia cores were fabricated and divided into five groups according to veneered ceramic materials such as Creation porcelain powder, Cercon Ceram Kiss, and IPS e.max ZirPress. Thirty spacimens were prepared using Creation porcelain powder, veneered 3mm height and 3mm in diameter, over the metal cores (n=10). Twenty specimens were prepared using Cercon Ceram Kiss and Zirpress, veneered 3mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1mm/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 18.44 for Uni metal VH/Creation (NCUC); 18.72 for Heraenium/Creation (NCHC); 16.23 for Wirobond C/Creation (NCWC); 13.88 for Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss (ZS110P); 14.61 for Zirconia core/No surface treatment/IPS e.max ZirPress (ZNTH). The mean shear bond strength for NCUC (Uni metal VH/Creation), NCHC (Heraenium/Creation) and NCWC (Wirobond C/Creation) were significantly superior to ZS110P (Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss) and ZNTH(Zirconia core/No surface treatment/IPS e.max ZirPress) (p<0.05).

  • PDF

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting (알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가)

  • Kwon, Minsol;Go, Jaeseong;Lee, Yesol;Lee, Sungmin;Yu, Jisu;Lee, Hyowon;Song, Sung Ho;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Diamond Films on Electroless Ni-P Plated WC-Co Substrates (무전해 Ni-P도금층/WC-Co기판 상에 다이아몬드 막 제조)

  • Kim, Jin-Oh;Kim, Hern;Park, Jeong-Il;Park, Kwang-Ja
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.742-748
    • /
    • 1997
  • Diamond films which have high hardness and thermal conductivity can be used to improve the performance of WC-Co as a cutting tool material. However, it is difficult to get such coatings of good uniformity and adhesiveness due to the surface characteristics of WC-Co. To get better coatings, some techniques, such as the surface treatment of substrate or the formation of interlayer between substrate and diamond film, have been tried. In the present work, the nickel interlayer is formed onto WC-Co by electroless Ni-P plating, which is introduced as a new method, and then diamond film is deposited on the interlayer. Formation and uniformity of three layers, i.e., substrate, electroless plate, and diamond film, and the adhesiveness of interlayers were studied. To investigate the effects of pretreatment on electroless plating, two different methods such as acid treatment and diamond powder treatment were used. The effects of heat treatment of the electroless plated surface on adhesiveness between the substrate and the interlayer were examined. It was found that as the temperature increases, the Ni crystals grow and then result in improved adhesiveness. Diamond film coatings of pure diamond phase were obtained at $800^{\circ}C$. It is concluded that the heat treated electroless Ni-P plating can be effectively used as a interlayer between WC-Co substrate and diamond film.

  • PDF

Study on the Contamination Characteristics of Pollutants at Various type of Abandoned Metal Mines (폐금속 광산의 유형별 오염특성에 관한 연구)

  • Lee, Jong-Deuk;Kim, Tae Dong;Kim, Sun Gu;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.93-108
    • /
    • 2013
  • This study is aimed to prepare the effective detail survey methods(Phase II) of abandoned metal mines through the contamination assessment for mine types and facilities in the abandoned metal mine areas. The study sites of 12 abandoned mines are located in Gyeonggi-do and Gangwon-do and those were chosen among 310 sites that the Phase II survey was conducted from 2007 to 2009 after considering the results of Phase I for abandoned mines scattered all over the country. 12 study sites were classified into four types; Type I sites only have pit mouth. Type II sites have pit mouth and mine-waste field. Type III sites have pit mouth and tailing sorting field. Type IV sites have pit mouth, tailing sorting field and concentrator(s). In forest land, paddy soil and farm land of Type I, As and Cd were showed average concentration, and Cu and Pb were high on the pit mouth area in one mines where the pit mouth was developed within 500 m. In the mines of Type II, Cu and Pb were showed average concentration too, but As and Cd were slightly high in pit mouth and mine-waste field. The mines of Type III which had grinding particle process through physical separation milling or hitting showed similar tendency with Type II. However, mines of Type IV pit mouth, mine-waste field and showed various results depending on defining the contamination sources. For example, if contamination source was pit mouth, the mixed results of Type I, II, II were showed. In tailing sorting field which was regarded as the most important source and having high mobility, however, if there were no facilities or it was difficult to access directly, field sampling was missed occasionally during phase I and phase II survey. For that reason, the assessment for tailing sorting field is missed and it leads to completely different results. In the areas of Type I mines, the concentration of heavy metals exceeded precautionary standards of soil contamination or not within 1,000 meters of pit mouth. Nickel(Ni) was the largest factor of the heavy metal contamination in this type. The heavy metals except Arsenic(As) were shown high levels of concentration in Type II areas, where pit mouth and mine-waste field were operated for making powder in upriver region; therefore, to the areas in the vicinity of midstream and downstream, the high content of heavy metals were shown. The tendency of high level of heavy metals and toxic materials contained in flotation agent used during sorting process were found in soil around sorting and tailing field. In the abandoned-pit-mouth area, drygrinding area and tailing sorting field area, the content of Cupper(Cu) and Zinc(Zn) were higher than other areas. Also, the contaminated area were larger than mine reclamation area(2,000 m) and the location of tailing sorting field was one of the important factors to estimate contaminated area.

Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries (리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성)

  • Choi, Young-Jin;Ryu, Ho-Suk; Cho, Gyu-Bon;Cho, Kwon-Koo;Ryu, Kwang-Sun;Kim, Ki-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2009
  • $\beta-Ga_{2}O_{3}$ nanorods were synthesized by chemical vapor deposition method using nickel-oxide nanoparticle as a catalyst and gallium metal powder as a source material. The average diameter of nanorods was around 160 nm and the average length was $4{\mu}m$. Also, we confirmed that the synthesis of nanorods follows the vapor-solid growth mechanism. From the results of X-ray diffraction and HR-TEM observation, it can be found that the synthesized nanorods consisted of a typical core-shell structure with single-crystalline $\beta-Ga_{2}O_{3}$ core with a monoclinic crystal structure and an outer amorphous gallium oxide layer. Li/$\beta-Ga_{2}O_{3}$ nanorods cell delivered capacity of 867 mAh/g-$\beta-Ga_{2}O_{3}$ at first discharge. Although the Li/$\beta-Ga_{2}O_{3}$ nanorods cell showed low coulombic efficiency at first cycle, the cell exhibited stable cycle life property after fifth cycle.

Organophosphorus Pesticide Residues in Major Enviromental Components of Nakdong River (낙동강(洛東江) 주요(主要) 환경(環境) 구성분중(構成分中) 유기인계(有機燐系) 농약잔류분(農藥殘留分))

  • Park, Chang-Kyu;Han, Dae-Sung;Hur, Jang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.36-44
    • /
    • 1984
  • Waters, sediments and crucian carps samples collected bimonthly from Nakdong river during- the period of August 1982 to June 1983 were analyzed for organophosphorus pesticide residues by GLC equipped with a flame photometric detector. Among the environmental samples, IBP, diazinon, phenthoate, parathion, malathion and fenitrothion residues were found only in waters and crucian carps and sediments samples were devoid of the residues. In addition, seasonal variations of the residues in waters and crucian carps were observed. Waters and crucian carps samples collected in August, when pesticides are generally in great demand, contained all the organophosphorus pesticide residues while no organophosphorus were detected in waters and crucian carps samples collected in February, April or December. The most abundant residues in the two environmental samples were diazinon and IBP and residue levels of parathion, malathion and fenitrothion were found extremely low.

  • PDF